Home The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Article
Licensed
Unlicensed Requires Authentication

The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses

  • Ömer Kaban , Gülçin Bilgici Cengiz , İlyas Çağlar and Gökhan Bilir ORCID logo EMAIL logo
Published/Copyright: August 20, 2024

Abstract

In this study, we have reported on the effect of the rare earth oxides on the radiation protection performance of the tellurite glasses. In order to determine the effect of rare earth oxides on the radiation shielding properties of tungsten oxide (WO3) modified tellurite glasses, three rare earth element oxides (Nd2O3, Yb2O3, and Er2O3) have been selected. The glass systems have been synthesized using the traditional melt quenching method and were doped with the different amount (1 %, 3 %, 5 %) of the oxides of rare earth elements (Nd2O3, Yb2O3, Er2O3). The linear attenuation coefficient, mass attenuation coefficient, half value layer, and effective atomic number of the synthesized samples were experimentally measured for 662, 1,173 and 1,332 keV gamma-ray energies which were emitted from 137Cs and 60Co radioactive sources. Measurements were conducted in narrow beam transmission geometry using a NaI(Tl) scintillation detector. In addition, all these parameters were calculated theoretically using the WinXCOM program in the energy region of 0.015–15 MeV. The addition of different types and amounts of rare earth oxides to the tellurite glass system was found to significantly enhance the radiation protection performance of the glasses. In particular, it was found that the radiation shielding characteristics of the glasses improved with increasing amount of rare earth doping, the TWYb5 glass system had the best radiation shielding properties, and there was a trend among the doped rare earth oxides in the form of Yb > Er > Nd according to their radiation shielding performance.


Corresponding author: Gökhan Bilir, Department of Physics, Faculty of Science and Literature, Kafkas University, 36100 Kars, Türkiye, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This study was financially supported by the Coordination Office of the Scientific Projects of the Kafkas University under the project number 2022-FM-65.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Ahmed, E. K.; Mahran, H. M.; Alrashdi, M. F.; Elsafi, M. Studying the Shielding Ability of Different Cement Mortars Against Gamma Ray Sources Using Waste Iron and BaO Microparticles. Nexus Future Mater. 2024, 1, 1–5.10.70128/583327Search in Google Scholar

2. Rotkovich, A. A.; Tishkevich, D. I.; German, S. A.; Bondaruk, A. A.; Dashkevich, E. S.; Trukhanov, A. V. A Study of the Morphological, Structural, and Shielding Properties of Epoxy-W Composite Materials. Nexus Future Mater. 2024, 1, 13–19.10.70128/584044Search in Google Scholar

3. Waida, J.; Rilwan, U. A Comparative Analysis of Radon-222 Concentration in Water Sources and its Potential Stomach and Lungs Doses: A Case Study of Borno State University Campus and its Environs. Nexus Future Mater. 2024, 1, 39–50.Search in Google Scholar

4. Almuqrin, A. H.; Rashad, M.; More, C. V.; Sayyed, M. I.; Elsafi, M. An Experimental and Theoretical Study to Evaluate Al2O3–PbO–B2O3–SiO2–BaO Radiation Shielding Properties. Radiat. Phys. Chem. 2024, 222, 111824; https://doi.org/10.1016/j.radphyschem.2024.111824.Search in Google Scholar

5. Altowyan, A. S.; Sayyed, M. I.; Kumar, A.; Rashad, M. SrO–ZnO–PbO–B2O3 Glassy Insights: Unveiling the Structural and Optical Features for Gamma Ray Shielding Efficacy. Opt. Mater. 2024, 152, 115534; https://doi.org/10.1016/j.optmat.2024.115534.Search in Google Scholar

6. Alasali, H. J.; Rilwan, U.; Mahmoud, K. A.; Hanafy, T. A.; Sayyed, M. I. Comparative Analysis of TiO2, Fe2O3, CaO and CuO in Borate Based Glasses for Gamma Ray Shielding. Nucl. Eng. Technol. 2024. https://doi.org/10.1016/j.net.2024.05.006.Search in Google Scholar

7. Al-Buriahi, M. S.; Sriwunkum, C.; Arslan, H.; Tonguc, B. T.; Bourham, M. A. Investigation of Barium Borate Glasses for Radiation Shielding Applications. Appl. Phys. A 2020, 126 (1), 68; https://doi.org/10.1007/s00339-019-3254-9.Search in Google Scholar

8. Albarzan, B.; Almuqrin, A. H.; Koubisy, M. S.; Wahab, E. A.; Mahmoud, K. A.; Shaaban, K.; Sayyed, M. I. Effect of Fe2O3 Doping on Structural, FTIR and Radiation Shielding Characteristics of Aluminium-Lead-Borate Glasses. Prog. Nucl. Energy 2021, 141, 103931; https://doi.org/10.1016/j.pnucene.2021.103931.Search in Google Scholar

9. El-Rehim, A. A.; Shaaban, K. S. Influence of La2O3 Content on the Structural, Mechanical, and Radiation-Shielding Properties of Sodium Fluoro Lead Barium Borate Glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 4651–4671; https://doi.org/10.1007/s10854-020-05204-7.Search in Google Scholar

10. Bilir, G.; Bilgici Cengiz, G.; Çağlar, İ.; Ertap, H. Photon Radiation Shielding Properties of Germanate Glass Systems Containing Bi2O3, PbF2, and B2O3. Int. J. Appl. Glass Sci. 2022, 13 (4), 729–737; https://doi.org/10.1111/ijag.16562.Search in Google Scholar

11. Al-Buriahi, M. S.; Alzahrani, J. S.; Olarinoye, I. O.; Mutuwong, C.; Elsaeedy, H. I.; Alomairy, S.; Tonguç, B. T. Effects of Reducing PbO Content on the Elastic and Radiation Attenuation Properties of Germanate Glasses: A New Non-Toxic Candidate for Shielding Applications. J. Mater. Sci.: Mater. Electron. 2021, 32 (11), 15080–15094; https://doi.org/10.1007/s10854-021-06060-9.Search in Google Scholar

12. Issa, S. A.; Sayyed, M. I.; Mostafa, A. M. A.; Lakshminarayana, G.; Kityk, I. V. Investigation of Mechanical and Radiation Shielding Features of Heavy Metal Oxide Based Phosphate Glasses for Gamma Radiation Attenuation Applications. J. Mater. Sci.: Mater. Electron. 2019, 30, 12140–12151; https://doi.org/10.1007/s10854-019-01572-x.Search in Google Scholar

13. Wahab, E. A.; Ahmed, E. M.; Rammah, Y. S.; Shaaban, K. S. Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5–As2O3–PbO Glasses Doped Vanadium Ions. J. Inorg. Organomet. Polym. Mater. 2022, 32 (10), 3983–3996; https://doi.org/10.1007/s10904-022-02400-2.Search in Google Scholar

14. Shaaban, K. S.; Al-Baradi, A. M.; Alotaibi, B. M.; Abd El-Rehim, A. F. Mechanical and Radiation Shielding Features of Lithium Titanophosphate Glasses Doped BaO. J. Mater. Res. Technol. 2023, 23, 756–764; https://doi.org/10.1016/j.jmrt.2023.01.062.Search in Google Scholar

15. Çağlar, İ.; Cengiz, G. B.; Bilir, G. Gamma Radiation Shielding Properties of Some Binary Tellurite Glasses. J. Non-Cryst. Solids 2021, 574, 121139; https://doi.org/10.1016/j.jnoncrysol.2021.121139.Search in Google Scholar

16. Hussan, G.; Khan, S.; Ahmad, R.; Farooq, A.; Anwar, M. Effect of WO3 on the Radiation Shielding Ability of TeO2–TiO2–WO3 Glass System. Radiochim. Acta 2023, 111 (5), 401–413; https://doi.org/10.1515/ract-2022-0057.Search in Google Scholar

17. Al-Buriahi, M. S.; Alrowaili, Z. A.; Eke, C.; Alzahrani, J. S.; Olarinoye, I. O.; Sriwunkum, C. Optical and Radiation Shielding Studies on Tellurite Glass System Containing ZnO and Na2O. Optik 2022, 257, 168821; https://doi.org/10.1016/j.ijleo.2022.168821.Search in Google Scholar

18. Alzahrani, J. S.; Alothman, M. A.; Eke, C.; Al-Ghamdi, H.; Aloraini, D. A.; Al-Buriahi, M. S. Simulating the Radiation Shielding Properties of TeO2–Na2O–TiO Glass System Using PHITS Monte Carlo Code. Comput. Mater. Sci. 2021, 196, 110566; https://doi.org/10.1016/j.commatsci.2021.110566.Search in Google Scholar

19. Bilir, G.; Kaya, A.; Cinkaya, H.; Eryürek, G. Spectroscopic Investigation of Zinc Tellurite Glasses Doped with Yb3+ and Er3+ Ions. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2016, 165, 183–190; https://doi.org/10.1016/j.saa.2016.04.042.Search in Google Scholar PubMed

20. Ersundu, A. E.; Büyükyıldız, M.; Ersundu, M. Ç.; Şakar, E.; Kurudirek, M. The Heavy Metal Oxide Glasses within the WO3–oO3–TeO2 System to Investigate the Shielding Properties of Radiation Applications. Prog. Nucl. Energy 2018, 104, 280–287; https://doi.org/10.1016/j.pnucene.2017.10.008.Search in Google Scholar

21. Yin, S.; Zhang, Z.; Xiang, Y.; Qiao, Q.; Ding, G.; Huang, X.; Lin, Q. Nuclear Radiation Shielding Performance of the New Lead-Free TeO2–Bi2O3–ZnO–BaF2 Glass. Int. J. Appl. Ceram. Technol. 2024. https://doi.org/10.1111/ijac.14723.Search in Google Scholar

22. Bilir, G.; Mustafaoglu, N.; Ozen, G.; Di Bartolo, B. Characterization of Emission Properties of Er3+ Ions in TeO2–CdF2–WO3 Glasses. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2011, 83 (1), 314–321; https://doi.org/10.1016/j.saa.2011.08.037.Search in Google Scholar PubMed

23. Bilir, G.; Ozen, G. Optical Absorption and Emission Properties of Nd3+ in TeO2–WO3 and TeO2–WO3–CdO Glasses. Phys. B: Condens. Matter 2011, 406 (21), 4007–4013; https://doi.org/10.1016/j.physb.2011.07.010.Search in Google Scholar

24. Bilir, G. Intense Upconverted White Light Emission from Tm3+–Er3+–Yb3+ Doped Zinc Tungsten Tellurite Glasses. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2017, 21 (3), 786–790; https://doi.org/10.19113/sdufbed.28398.Search in Google Scholar

25. Vani, P.; Vinitha, G.; Sayyed, M. I.; AlShammari, M. M.; Manikandan, N. Effect of Rare Earth Dopants on the Radiation Shielding Properties of Barium Tellurite Glasses. Nucl. Eng. Technol. 2021, 53 (12), 4106–4113; https://doi.org/10.1016/j.net.2021.06.009.Search in Google Scholar

26. Malidarre, R. B.; Akkurt, I.; Kocar, O.; Ekmekci, I. Analysis of Radiation Shielding, Physical and Optical Qualities of Various Rare Earth Dopants on Barium Tellurite Glasses: A Comparative Study. Radiat. Phys. Chem. 2023, 207, 110823; https://doi.org/10.1016/j.radphyschem.2023.110823.Search in Google Scholar

27. Abd-Allah, W. M.; Fayad, A. M.; Saudi, H. A. Effect of Doping Some Lanthanide Oxides on Optical and Radiation Shielding Properties of Cadmium Borate Glasses. Opt. Quantum Electron. 2019, 51, 1–14; https://doi.org/10.1007/s11082-019-1870-4.Search in Google Scholar

28. Bilir, G. Synthesis and Spectroscopy of Nd3+ Doped Tellurite-Based Glasses. Int. J. Appl. Glass Sci. 2015, 6 (4), 397–405; https://doi.org/10.1111/ijag.12124.Search in Google Scholar

29. Shaaban, K. S.; Alotaibi, B. M.; Yousef, E. S. Effect of La2O3 Concentration on the Structural, Optical and Radiation-Shielding Behaviors of Titanate Borosilicate Glasses. J. Electron. Mater. 2023, 52 (6), 3591–3603; https://doi.org/10.1007/s11664-023-10347-4.Search in Google Scholar

30. Alrowaili, Z. A.; Al-Baradi, A. M.; Sayed, M. A.; Ali, A. M.; Wahab, E. A.; Al-Buriahi, M. S.; Shaaban, K. S. The Impact of Fe2O3 on the Dispersion Parameters and Gamma/Fast Neutron Shielding Characteristics of Lithium Borosilicate Glasses. Optik 2022, 249, 168259; https://doi.org/10.1016/j.ijleo.2021.168259.Search in Google Scholar

31. Rammah, Y. S.; El-Agawany, F. I.; Wahab, E. A.; Hessien, M. M.; Shaaban, K. S. Significant Impact of V2O5 Content on Lead Phosphor-Arsenate Glasses for Mechanical and Radiation Shielding Applications. Radiat. Phys. Chem. 2022, 193, 109956; https://doi.org/10.1016/j.radphyschem.2021.109956.Search in Google Scholar

32. Abdelgawad, K. R. M.; Ahmed, G. S. M.; Farag, A. T. M.; Bendary, A. A.; Salem, S. M.; Tartor, B. A.; Bashter, I. I. Structure and Gamma-Ray Attenuation Capabilities for Eco-Friendly Transparent Glass System Prepared from Rice Straw Ash. Prog. Nucl. Energy 2023, 158, 104586; https://doi.org/10.1016/j.pnucene.2023.104586.Search in Google Scholar

33. Sayyed, M. I.; Dwaikat, N.; Mhareb, M. H. A.; D’Souza, A. N.; Almousa, N.; Alajerami, Y. S. M.; Almasoud, F.; Naseer, K. A.; Kamath, S. D.; Khandaker, M. U.; Osman, H.; Alamri, S. Effect of TeO2 Addition on the Gamma Radiation Shielding Competence and Mechanical Properties of Boro-Tellurite Glass: An Experimental Approach. J. Mater. Res. Technol. 2022, 18, 1017–1027; https://doi.org/10.1016/j.jmrt.2022.02.130.Search in Google Scholar

34. El-Taher, A.; Ali, A. M.; Saddeek, Y. B.; Elsaman, R.; Algarni, H.; Shaaban, K.; Amer, T. Z. Gamma Ray Shielding and Structural Properties of Iron Alkali Alumino-Phosphate Glasses Modified by PbO. Radiat. Phys. Chem. 2019, 165, 108403; https://doi.org/10.1016/j.radphyschem.2019.108403.Search in Google Scholar

35. Ravangvong, S.; Glumglomchit, P.; Zuprakhon, S.; Thinkoksoong, T.; Jitrawang, P.; Sriwongsa, K.; Khobkham, C.; Kaewkhao, J. The Properties of Bi2O3 Additive on Radiation Shielding and Elastic Moduli Properties of TeO2–P2O5 Based Glass System. Integr. Ferroelectr. 2023, 238 (1), 280–295; https://doi.org/10.1080/10584587.2023.2234576.Search in Google Scholar

36. Shaaban, K. S.; Tamam, N.; Alghasham, H. A.; Alrowaili, Z. A.; Al-Buriahi, M. S.; Ellakwa, T. E. Thermal, Optical, and Radiation Shielding Capacity of B2O3–MoO3–Li2O–Nb2O5 Glasses. Mater. Today Commun. 2023, 37, 107325; https://doi.org/10.1016/j.mtcomm.2023.107325.Search in Google Scholar

37. Alyousef, H. A.; Alrowaili, Z. A.; Saad, M.; Al-Mohiy, H.; Alshihri, A. A.; Shaaban, K. S.; Wahab, E. A. Examinations of Mechanical, and Shielding Properties of CeO2 Reinforced B2O3–ZnF2–Er2O3–ZnO Glasses for Gamma-Ray Shield and Neutron Applications. Heliyon 2023, 9 (3); https://doi.org/10.1016/j.heliyon.2023.e14435.Search in Google Scholar PubMed PubMed Central

38. Gaikwad, D. K.; Sayyed, M. I.; Obaid, S. S.; Issa, S. A.; Pawar, P. P. Gamma Ray Shielding Properties of TeO2–ZnF2–As2O3–Sm2O3 Glasses. J. Alloys Compd. 2018, 765, 451–458; https://doi.org/10.1016/j.jallcom.2018.06.240.Search in Google Scholar

39. El-Sharkawy, R. M.; Shaaban, K. S.; Elsaman, R.; Allam, E. A.; El-Taher, A.; Mahmoud, M. E. Investigation of Mechanical and Radiation Shielding Characteristics of Novel Glass Systems with the Composition xNiO–20ZnO–60B2O3–(20–X) CdO Based on Nanometal Oxides. J. Non-Cryst. Solids 2020, 528, 119754; https://doi.org/10.1016/j.jnoncrysol.2019.119754.Search in Google Scholar

40. Saudi, H. A.; Abd-Allah, W. M.; Shaaban, K. S. Investigation of Gamma and Neutron Shielding Parameters for Borosilicate Glasses Doped Europium Oxide for the Immobilization of Radioactive Waste. J. Mater. Sci.: Mater. Electron. 2020, 31, 6963–6976; https://doi.org/10.1007/s10854-020-03261-6.Search in Google Scholar

41. Mahmoud, M.; Makhlouf, S. A.; Alshahrani, B.; Yakout, H. A.; Shaaban, K. S.; Wahab, E. A. Experimental and Simulation Investigations of Mechanical Properties and Gamma Radiation Shielding of Lithium Cadmium Gadolinium Silicate Glasses Doped Erbium Ions. Silicon 2021, 1–15; https://doi.org/10.1007/s12633-021-01062-y.Search in Google Scholar

42. Kaur, P.; Singh, K. J.; Thakur, S.; Singh, P.; Bajwa, B. S. Investigation of Bismuth Borate Glass System Modified with Barium for Structural and Gamma-Ray Shielding Properties. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2019, 206, 367–377; https://doi.org/10.1016/j.saa.2018.08.038.Search in Google Scholar PubMed

Received: 2024-04-16
Accepted: 2024-07-29
Published Online: 2024-08-20
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0297/html
Scroll to top button