Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
-
Kundan Kishore
, Kuldeep K. Shukla
Abstract
The aim of this research is to assess the effectiveness of gamma irradiation in developing genetic variability in dragon fruit by influencing biochemical attributes. Seeds of dragon fruit were exposed to 100, 200, 300, 400 and 500 Gy γ-radiation using Co-60 source. Highest germinability, mean germination time, mean daily germination, vigour index and growth rate were observed in untreated seeds, however these traits were relatively less affected at lower irradiation level (up to 200 Gy). An irradiation level of ≥ 400 Gy severely affected germination traits and seedling growth and consequently 441 Gy irradiation level was considered as the lethal dose (LD50) for dragon fruit. Photosynthetic pigments, protein content and nutrient content were highest in untreated seedlings and moderately high up to 200 Gy. Findings demonstrated that the concentration of biochemical markers for abiotic stress tolerance viz. proline, phenol, flavonoid and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase), were significantly high at 200 Gy irradiation level. Hence an irradiation dose of 200 Gy may be considered as an optimal for induced mutagenesis for abiotic stress tolerance in dragon fruit with the least possible unintended damage to seedling growth traits. The findings provide valuable insights into the efficient utilization of γ-irradiation in expediting the development of abiotic stress-tolerant mutant lines of dragon fruit.
Acknowledgements
Authors are thankful to Head, CHES (ICAR-IIHR), Bhubaneswar for extending help during the experiment and Head MFPI–Quality Control Laboratory, Prof. Jayashankar Telangana State Agricultural University, Hyderabad, India for providing irradiation facility.
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: We are thankful to the Indian Council of Agricultural Research, New Delhi for providing fund during the research work.
-
Data availability: Data will be made available on request.
References
1. MVD. Mutant Variety Database Joint FAO/IAEA Mutant Variety Database, 2021. https://mvd.iaea.org.Suche in Google Scholar
2. Oladosu, Y.; Rafii, M. Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H. A.; Miah, G.; Usman, M. X. Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotech. Biotech. Equip. 2022, 30, 1–16; https://doi.org/10.1080/13102818.2015.1087333.Suche in Google Scholar
3. Pujar, D. U.; Vasugi, C.; Vageeshbabu, H. S.; Honnabyraiah, M. K.; Adiga, D.; Jayappa, J.; Kanupriya, C. Evaluation of Mutant Progenies for Improved Morphological, Fruit and Yield Traits. J. Pharma. Phytochem. 2019, 8, 2324–2334.Suche in Google Scholar
4. Smitha, S.; Vageeshbabu, H. S.; Hanur, S. S.; Shyamalamma, S. Field Evaluation of Gamma Irradiated M1 Population of Papaya (Carica Papaya L.) Cv. Arka Prabhath. Mysore J. Agril. Sci. 2022, 56, 1–15.Suche in Google Scholar
5. Uthairatanakij, A.; Cholmaitri, C.; Aiamlaor, S.; Jitareerat, P. Gamma Irradiation as Phytosanitary Treatment for Red Flesh Dragon Fruit. Acta Hort 2018, 1210, 145–150; https://doi.org/10.17660/actahortic.2018.1210.20.Suche in Google Scholar
6. Mizrahi, Y.; Nerd, A.; Nobel, P. S. Cacti as a Crop. Hort. Rev. 1997, 18, 291–320.10.1002/9780470650608.ch6Suche in Google Scholar
7. Tel-Zur, N.; Abbo, S.; Bar-Zvi, D.; Mizrahi, Y. Genetic Relationships Among Hylocereus and Selenicereus Vine Cacti (Cactaceae): Evidence from Hybridization and Cytological Studies. Ann. Bot. 2004, 94, 527–534; https://doi.org/10.1093/aob/mch183.Suche in Google Scholar PubMed PubMed Central
8. Wichienchot, S.; Jatupornpipat, M.; Rastall, R. A. Oligosaccharides of Pitaya (Dragon Fruit) Flesh and Their Prebiotic Properties. Food Chem. 2010, 120, 850–857; https://doi.org/10.1016/j.foodchem.2009.11.026.Suche in Google Scholar
9. Tenore, G. C.; Novellino, E.; Basile, A. Nutraceutical Potential and Antioxidant Benefits of Red Pitaya (Hylocereus Polyrhizus) Extracts. J. Func. Foods 2012, 4, 129–136; https://doi.org/10.1016/j.jff.2011.09.003.Suche in Google Scholar
10. Abd, H. N.; Mohamad, M.; Rohin, M. A. K.; Yusof, R. M. Effects of Red Pitaya Fruit (Hylocereus Polyrhizus) Consumption on Blood Glucose Level and Lipid Profile in Type 2 Diabetic Subjects. Borneo Sci. J. 2012, 31, 113–129.Suche in Google Scholar
11. Panou, A.; Ioannis, A.; Karabagias, K.; Riganako, K. A. Effect of Gamma-Irradiation on Sensory Characteristics, Physicochemical Parameters, and Shelf Life of Strawberries Stored under Refrigeration. Inter. J. Fruit Sci. 2020, 20, 191–206; https://doi.org/10.1080/15538362.2019.1608890.Suche in Google Scholar
12. Villavicencio, A. L. C. H.; Mancini-Filho, J.; Delincee, H.; Greiner, R. Effect of Irradiation on Anti-nutrients (Total Phenolics, Tannins and Phytate) in Brazilian Beans. Radia. Phy. Chem. 2000, 57, 289–293; https://doi.org/10.1016/s0969-806x(99)00393-x.Suche in Google Scholar
13. Deng, R., Fan, J., Wang, Y., Liu, T., Jin, J. Mutation Induction of EMS and 60Co γ Irradiation In Vitro Cultured Seedlings of Red Pulp Pitaya (Stenocereus) and ISSR Analyzing of Mutant. 2020, https://doi.org/10.21203/rs.3.rs-19273/v1.Suche in Google Scholar
14. Moghadam, P. A.; Alaei, Y. Evaluation of Important Germination Traits of Soybean Genotypes through Factor Analysis in Osmotic Drought Stress Conditions. Bull. Environ. Phar. Life Sci. 2014, 3, 5–8.Suche in Google Scholar
15. Ellis, R. H.; Roberts, E. H. The Quantification of Ageing and Survival in Orthodox Seeds. Seed Sci. Tech. 1981, 9, 373–409.Suche in Google Scholar
16. Abdul-Baki, A. A.; Anderson, J. D. Vigor Determination in Soybeans Seed by Multiple Criteria. Crop Sci. 1973, 13, 630; https://doi.org/10.2135/cropsci1973.0011183x001300060013x.Suche in Google Scholar
17. Thangwana, A.; Eastonce, T.; Gwata, E. A.; Zhou, M. M. Impact of Chemical Mutagenesis Using Ethyl Methane Sulphonate Ontepary Bean Seedling Vigour and Adult Plant Performance. Heliyon 2021, 7, e06103; https://doi.org/10.1016/j.heliyon.2021.e06103.Suche in Google Scholar PubMed PubMed Central
18. Fan, X. X.; Zang, J.; Xu, Z. G.; Guo, S. R.; Jiao, X. L.; Liu, X. Y.; Gao, Y. Effects of Different Light Quality on Growth, Chlorophyll Concentration and Chlorophyll Biosynthesis Precursors of Non-heading Chinese Cabbage (Brassica Campestris L.). Acta Physio Pl 2013, 35, 2721–2726; https://doi.org/10.1007/s11738-013-1304-z.Suche in Google Scholar
19. Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254; https://doi.org/10.1006/abio.1976.9999.Suche in Google Scholar PubMed
20. Ikram, E. H.; Eng, K. H.; Jalil, A. M.; Ismail, A.; Idris, S.; Azlan, A.; Nazri, H. S.; Diton, N. A.; Mokhtar, R. A. Antioxidant Capacity and Total Phenolic Content of Malaysian Underutilized Fruits. J. Food Comp. Ana. 2009, 22, 388–393; https://doi.org/10.1016/j.jfca.2009.04.001.Suche in Google Scholar
21. Chang, C. C.; Yang, M. H.; Wen, H. M.; Chern, J. C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 178–182; https://doi.org/10.38212/2224-6614.2748.Suche in Google Scholar
22. Bates, L. S.; Waldren, R. A.; Teare, I. D. Rapid Determination of Free Proline for Water-Stress Studies. Pl. Soil 1973, 39, 205–207; https://doi.org/10.1007/bf00018060.Suche in Google Scholar
23. Beyer, W. F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Condition. Anal. Biochem. 1987, 161, 559–566; https://doi.org/10.1016/0003-2697(87)90489-1.Suche in Google Scholar PubMed
24. Woodbury, W.; Spencer, A. K.; Stahmann, M. A. An Improved Procedure Using Ferricyanide for Detecting Catalase Isozymes. Anal. Biochem. 1971, 44, 301–305; https://doi.org/10.1016/0003-2697(71)90375-7.Suche in Google Scholar PubMed
25. Mittler, R.; Zilinskas, B. A. Detection of Ascorbate Peroxidase Activity in Native Gels by Inhibition of the Ascorbate Dependent Reduction of Nitroblue Tetrazolium. Anal. Biochem. 1993, 212, 540–546; https://doi.org/10.1006/abio.1993.1366.Suche in Google Scholar PubMed
26. Zasoski, R. J.; Burau, R. G. A Rapid Nitric Perchloric Acid Digestion Method for Multielement Tissue Analysis. Commun Soil Sci. Pl. Anal. 1977, 8, 425–436; https://doi.org/10.1080/00103627709366735.Suche in Google Scholar
27. Gudkov, S. V.; Grinberg, M. A.; Sukhov, V.; Vodeneev, V. Effect of Ionizing Radiation on Physiological and Molecular Processes in Plants. J. Env. Radio. 2019, 202, 8–24; https://doi.org/10.1016/j.jenvrad.2019.02.001.Suche in Google Scholar PubMed
28. Hong, M. J.; Kim, D. Y.; Jo, Y. D.; Choi, H.; Ahn, J. W.; Kwon, S.; Kim, S. H.; Seo, Y. W.; Kim, J. Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. Appl. Sci. 2022, 12, 3208; https://doi.org/10.3390/app12063208.Suche in Google Scholar
29. Muhammad, M.; Rafii, M. Y.; Nazli, M. H.; Ramlee, S. I.; Harun, A. R.; Oladosu, Y. Determination of Lethal (LD) and Growth Reduction (GR) Doses on Acute and Chronic Gamma- Irradiated Bambara Groundnut [Vigna Subterranea (L.) Verdc.] Varieties. J. Rad. Res. Appl. Sci. 2021, 14, 133–145; https://doi.org/10.1080/16878507.2021.1883320.Suche in Google Scholar
30. Verma, R.; Purbiya, R. Effects of Gamma Radiations on Seed Germination and Morphological Characteristics of Pea (Pisum Sativum L.). Ind. J. Pl. Sci. 2017, 6, 21–25.Suche in Google Scholar
31. Horn, L. N.; Ghebrehiwot, H. M.; Shimelis, H. A. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation. Front. Pl. Sci. 2016, 7, 262; https://doi.org/10.3389/fpls.2016.00262.Suche in Google Scholar PubMed PubMed Central
32. Bhosale, R. S.; More, A. D. Effect of Gamma Radiation on Seed Germination, Seedling Height and Seedling Injury in Withania Somnifera (L.) Dunal. Inter. J. Life Sci. 2014, 2, 226–228.Suche in Google Scholar
33. Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Pl. Sci. 2002, 7, 405–410; https://doi.org/10.1016/s1360-1385(02)02312-9.Suche in Google Scholar PubMed
34. Ling, A. P. K.; Chia, J. Y.; Hussein, S.; Harun, A. R. Physiological Responses of Citrus Sinensis to Gamma Irradiation. World Appl. Sci. J. 2008, 5, 12–19.Suche in Google Scholar
35. Naikoo, M. I.; Dar, M. I.; Raghib, F.; Jaleel, H.; Bilal, A. B.; Raina, A.; Khan, F. A.; Naushin, F. Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signalling Molecules; Iqbal, M.; Khan, R.; Reddy, P. R.; Khan, N. A., Eds.; Woodhead Publishing: Cambridge, 2019; pp 157–168.10.1016/B978-0-12-816451-8.00009-5Suche in Google Scholar
36. Chutipaijit, S.; Cha-Um, S.; Sompornpailin, K. Differential Accumulations of Proline and Flavonoids in Indica Rice Varieties against Salinity. Pak. J. Bot. 2008, 41, 2497–2506.Suche in Google Scholar
37. Kavitha, C.; Kuna, A.; Supraja, T.; Sagar, S. B.; Padmavathi, T. V. N.; Neeraja, P. N. Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit. J. Food Sci. Tech. 2015, 52, 3123–3128; https://doi.org/10.1007/s13197-014-1359-x.Suche in Google Scholar PubMed PubMed Central
38. Hamideldin, N.; Hussien, O. S. Morphological, Physiological and Molecular Changes in Solanum tuberosum L. In Response to Pre-sowing Tuber Irradiation by Gamma Rays. Am. J. Food Sci. Tech. 2013, 1, 36–41.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses
Artikel in diesem Heft
- Frontmatter
- Original Papers
- The collaboratively selective uranyl adsorption of marine fungal modification biosorbent linked by the open-chain polyether terminal with amidoxime
- Assessment of certain theoretical modeling for extraction data of uranium ion by loaded SM-7 with TBP using fixed bed column operation
- Study on separation of ReO4−, a substitute for TcO4−, using functional ionic liquid impregnated extraction chromatography resins
- Synergistic extraction of some divalent cations into nitrobenzene by using dicarbollylcobaltate and substituted calix[5]arenes
- Development of gelatin nanoparticles for positron emission tomography diagnosis in pancreatic cancer
- Radiochemical separation of 161 Tb from neutron irradiated Gd target by liquid-liquid extraction technique
- Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
- Thermoluminescence response of Ce doped CaTiO3 nanophosphor synthesized by hydrothermal method for gamma dosimetry
- Significant influence of La2O3 content on radiation shielding characteristics properties of bismuth sodium borosilicate glasses
- The effect of rare earths (Nd3+, Er3+, Yb3+) additives on the radiation shielding properties of the tungsten oxide modified tellurite glasses