Home Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)
Article
Licensed
Unlicensed Requires Authentication

Influence of gamma irradiation on germination traits, growth and biochemical attributes of dragon fruit (Selenicereus monacanthus)

  • Kundan Kishore ORCID logo EMAIL logo , Kuldeep K. Shukla , Manas R. Sahoo , Kedareswar Pradhan , Rajkumari Bhol and Subash C. Swain
Published/Copyright: August 19, 2024

Abstract

The aim of this research is to assess the effectiveness of gamma irradiation in developing genetic variability in dragon fruit by influencing biochemical attributes. Seeds of dragon fruit were exposed to 100, 200, 300, 400 and 500 Gy γ-radiation using Co-60 source. Highest germinability, mean germination time, mean daily germination, vigour index and growth rate were observed in untreated seeds, however these traits were relatively less affected at lower irradiation level (up to 200 Gy). An irradiation level of ≥ 400 Gy severely affected germination traits and seedling growth and consequently 441 Gy irradiation level was considered as the lethal dose (LD50) for dragon fruit. Photosynthetic pigments, protein content and nutrient content were highest in untreated seedlings and moderately high up to 200 Gy. Findings demonstrated that the concentration of biochemical markers for abiotic stress tolerance viz. proline, phenol, flavonoid and antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase), were significantly high at 200 Gy irradiation level. Hence an irradiation dose of 200 Gy may be considered as an optimal for induced mutagenesis for abiotic stress tolerance in dragon fruit with the least possible unintended damage to seedling growth traits. The findings provide valuable insights into the efficient utilization of γ-irradiation in expediting the development of abiotic stress-tolerant mutant lines of dragon fruit.


Corresponding author: Kundan Kishore, Central Horticultural Experiment Station (ICAR- IIHR), Bhubaneswar, India, E-mail:

Acknowledgements

Authors are thankful to Head, CHES (ICAR-IIHR), Bhubaneswar for extending help during the experiment and Head MFPI–Quality Control Laboratory, Prof. Jayashankar Telangana State Agricultural University, Hyderabad, India for providing irradiation facility.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: We are thankful to the Indian Council of Agricultural Research, New Delhi for providing fund during the research work.

  5. Data availability: Data will be made available on request.

References

1. MVD. Mutant Variety Database Joint FAO/IAEA Mutant Variety Database, 2021. https://mvd.iaea.org.Search in Google Scholar

2. Oladosu, Y.; Rafii, M. Y.; Abdullah, N.; Hussin, G.; Ramli, A.; Rahim, H. A.; Miah, G.; Usman, M. X. Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotech. Biotech. Equip. 2022, 30, 1–16; https://doi.org/10.1080/13102818.2015.1087333.Search in Google Scholar

3. Pujar, D. U.; Vasugi, C.; Vageeshbabu, H. S.; Honnabyraiah, M. K.; Adiga, D.; Jayappa, J.; Kanupriya, C. Evaluation of Mutant Progenies for Improved Morphological, Fruit and Yield Traits. J. Pharma. Phytochem. 2019, 8, 2324–2334.Search in Google Scholar

4. Smitha, S.; Vageeshbabu, H. S.; Hanur, S. S.; Shyamalamma, S. Field Evaluation of Gamma Irradiated M1 Population of Papaya (Carica Papaya L.) Cv. Arka Prabhath. Mysore J. Agril. Sci. 2022, 56, 1–15.Search in Google Scholar

5. Uthairatanakij, A.; Cholmaitri, C.; Aiamlaor, S.; Jitareerat, P. Gamma Irradiation as Phytosanitary Treatment for Red Flesh Dragon Fruit. Acta Hort 2018, 1210, 145–150; https://doi.org/10.17660/actahortic.2018.1210.20.Search in Google Scholar

6. Mizrahi, Y.; Nerd, A.; Nobel, P. S. Cacti as a Crop. Hort. Rev. 1997, 18, 291–320.10.1002/9780470650608.ch6Search in Google Scholar

7. Tel-Zur, N.; Abbo, S.; Bar-Zvi, D.; Mizrahi, Y. Genetic Relationships Among Hylocereus and Selenicereus Vine Cacti (Cactaceae): Evidence from Hybridization and Cytological Studies. Ann. Bot. 2004, 94, 527–534; https://doi.org/10.1093/aob/mch183.Search in Google Scholar PubMed PubMed Central

8. Wichienchot, S.; Jatupornpipat, M.; Rastall, R. A. Oligosaccharides of Pitaya (Dragon Fruit) Flesh and Their Prebiotic Properties. Food Chem. 2010, 120, 850–857; https://doi.org/10.1016/j.foodchem.2009.11.026.Search in Google Scholar

9. Tenore, G. C.; Novellino, E.; Basile, A. Nutraceutical Potential and Antioxidant Benefits of Red Pitaya (Hylocereus Polyrhizus) Extracts. J. Func. Foods 2012, 4, 129–136; https://doi.org/10.1016/j.jff.2011.09.003.Search in Google Scholar

10. Abd, H. N.; Mohamad, M.; Rohin, M. A. K.; Yusof, R. M. Effects of Red Pitaya Fruit (Hylocereus Polyrhizus) Consumption on Blood Glucose Level and Lipid Profile in Type 2 Diabetic Subjects. Borneo Sci. J. 2012, 31, 113–129.Search in Google Scholar

11. Panou, A.; Ioannis, A.; Karabagias, K.; Riganako, K. A. Effect of Gamma-Irradiation on Sensory Characteristics, Physicochemical Parameters, and Shelf Life of Strawberries Stored under Refrigeration. Inter. J. Fruit Sci. 2020, 20, 191–206; https://doi.org/10.1080/15538362.2019.1608890.Search in Google Scholar

12. Villavicencio, A. L. C. H.; Mancini-Filho, J.; Delincee, H.; Greiner, R. Effect of Irradiation on Anti-nutrients (Total Phenolics, Tannins and Phytate) in Brazilian Beans. Radia. Phy. Chem. 2000, 57, 289–293; https://doi.org/10.1016/s0969-806x(99)00393-x.Search in Google Scholar

13. Deng, R., Fan, J., Wang, Y., Liu, T., Jin, J. Mutation Induction of EMS and 60Co γ Irradiation In Vitro Cultured Seedlings of Red Pulp Pitaya (Stenocereus) and ISSR Analyzing of Mutant. 2020, https://doi.org/10.21203/rs.3.rs-19273/v1.Search in Google Scholar

14. Moghadam, P. A.; Alaei, Y. Evaluation of Important Germination Traits of Soybean Genotypes through Factor Analysis in Osmotic Drought Stress Conditions. Bull. Environ. Phar. Life Sci. 2014, 3, 5–8.Search in Google Scholar

15. Ellis, R. H.; Roberts, E. H. The Quantification of Ageing and Survival in Orthodox Seeds. Seed Sci. Tech. 1981, 9, 373–409.Search in Google Scholar

16. Abdul-Baki, A. A.; Anderson, J. D. Vigor Determination in Soybeans Seed by Multiple Criteria. Crop Sci. 1973, 13, 630; https://doi.org/10.2135/cropsci1973.0011183x001300060013x.Search in Google Scholar

17. Thangwana, A.; Eastonce, T.; Gwata, E. A.; Zhou, M. M. Impact of Chemical Mutagenesis Using Ethyl Methane Sulphonate Ontepary Bean Seedling Vigour and Adult Plant Performance. Heliyon 2021, 7, e06103; https://doi.org/10.1016/j.heliyon.2021.e06103.Search in Google Scholar PubMed PubMed Central

18. Fan, X. X.; Zang, J.; Xu, Z. G.; Guo, S. R.; Jiao, X. L.; Liu, X. Y.; Gao, Y. Effects of Different Light Quality on Growth, Chlorophyll Concentration and Chlorophyll Biosynthesis Precursors of Non-heading Chinese Cabbage (Brassica Campestris L.). Acta Physio Pl 2013, 35, 2721–2726; https://doi.org/10.1007/s11738-013-1304-z.Search in Google Scholar

19. Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254; https://doi.org/10.1006/abio.1976.9999.Search in Google Scholar PubMed

20. Ikram, E. H.; Eng, K. H.; Jalil, A. M.; Ismail, A.; Idris, S.; Azlan, A.; Nazri, H. S.; Diton, N. A.; Mokhtar, R. A. Antioxidant Capacity and Total Phenolic Content of Malaysian Underutilized Fruits. J. Food Comp. Ana. 2009, 22, 388–393; https://doi.org/10.1016/j.jfca.2009.04.001.Search in Google Scholar

21. Chang, C. C.; Yang, M. H.; Wen, H. M.; Chern, J. C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 178–182; https://doi.org/10.38212/2224-6614.2748.Search in Google Scholar

22. Bates, L. S.; Waldren, R. A.; Teare, I. D. Rapid Determination of Free Proline for Water-Stress Studies. Pl. Soil 1973, 39, 205–207; https://doi.org/10.1007/bf00018060.Search in Google Scholar

23. Beyer, W. F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Condition. Anal. Biochem. 1987, 161, 559–566; https://doi.org/10.1016/0003-2697(87)90489-1.Search in Google Scholar PubMed

24. Woodbury, W.; Spencer, A. K.; Stahmann, M. A. An Improved Procedure Using Ferricyanide for Detecting Catalase Isozymes. Anal. Biochem. 1971, 44, 301–305; https://doi.org/10.1016/0003-2697(71)90375-7.Search in Google Scholar PubMed

25. Mittler, R.; Zilinskas, B. A. Detection of Ascorbate Peroxidase Activity in Native Gels by Inhibition of the Ascorbate Dependent Reduction of Nitroblue Tetrazolium. Anal. Biochem. 1993, 212, 540–546; https://doi.org/10.1006/abio.1993.1366.Search in Google Scholar PubMed

26. Zasoski, R. J.; Burau, R. G. A Rapid Nitric Perchloric Acid Digestion Method for Multielement Tissue Analysis. Commun Soil Sci. Pl. Anal. 1977, 8, 425–436; https://doi.org/10.1080/00103627709366735.Search in Google Scholar

27. Gudkov, S. V.; Grinberg, M. A.; Sukhov, V.; Vodeneev, V. Effect of Ionizing Radiation on Physiological and Molecular Processes in Plants. J. Env. Radio. 2019, 202, 8–24; https://doi.org/10.1016/j.jenvrad.2019.02.001.Search in Google Scholar PubMed

28. Hong, M. J.; Kim, D. Y.; Jo, Y. D.; Choi, H.; Ahn, J. W.; Kwon, S.; Kim, S. H.; Seo, Y. W.; Kim, J. Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. Appl. Sci. 2022, 12, 3208; https://doi.org/10.3390/app12063208.Search in Google Scholar

29. Muhammad, M.; Rafii, M. Y.; Nazli, M. H.; Ramlee, S. I.; Harun, A. R.; Oladosu, Y. Determination of Lethal (LD) and Growth Reduction (GR) Doses on Acute and Chronic Gamma- Irradiated Bambara Groundnut [Vigna Subterranea (L.) Verdc.] Varieties. J. Rad. Res. Appl. Sci. 2021, 14, 133–145; https://doi.org/10.1080/16878507.2021.1883320.Search in Google Scholar

30. Verma, R.; Purbiya, R. Effects of Gamma Radiations on Seed Germination and Morphological Characteristics of Pea (Pisum Sativum L.). Ind. J. Pl. Sci. 2017, 6, 21–25.Search in Google Scholar

31. Horn, L. N.; Ghebrehiwot, H. M.; Shimelis, H. A. Selection of Novel Cowpea Genotypes Derived through Gamma Irradiation. Front. Pl. Sci. 2016, 7, 262; https://doi.org/10.3389/fpls.2016.00262.Search in Google Scholar PubMed PubMed Central

32. Bhosale, R. S.; More, A. D. Effect of Gamma Radiation on Seed Germination, Seedling Height and Seedling Injury in Withania Somnifera (L.) Dunal. Inter. J. Life Sci. 2014, 2, 226–228.Search in Google Scholar

33. Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Pl. Sci. 2002, 7, 405–410; https://doi.org/10.1016/s1360-1385(02)02312-9.Search in Google Scholar PubMed

34. Ling, A. P. K.; Chia, J. Y.; Hussein, S.; Harun, A. R. Physiological Responses of Citrus Sinensis to Gamma Irradiation. World Appl. Sci. J. 2008, 5, 12–19.Search in Google Scholar

35. Naikoo, M. I.; Dar, M. I.; Raghib, F.; Jaleel, H.; Bilal, A. B.; Raina, A.; Khan, F. A.; Naushin, F. Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. In Plant Signalling Molecules; Iqbal, M.; Khan, R.; Reddy, P. R.; Khan, N. A., Eds.; Woodhead Publishing: Cambridge, 2019; pp 157–168.10.1016/B978-0-12-816451-8.00009-5Search in Google Scholar

36. Chutipaijit, S.; Cha-Um, S.; Sompornpailin, K. Differential Accumulations of Proline and Flavonoids in Indica Rice Varieties against Salinity. Pak. J. Bot. 2008, 41, 2497–2506.Search in Google Scholar

37. Kavitha, C.; Kuna, A.; Supraja, T.; Sagar, S. B.; Padmavathi, T. V. N.; Neeraja, P. N. Effect of gamma irradiation on antioxidant properties of ber (Zizyphus mauritiana) fruit. J. Food Sci. Tech. 2015, 52, 3123–3128; https://doi.org/10.1007/s13197-014-1359-x.Search in Google Scholar PubMed PubMed Central

38. Hamideldin, N.; Hussien, O. S. Morphological, Physiological and Molecular Changes in Solanum tuberosum L. In Response to Pre-sowing Tuber Irradiation by Gamma Rays. Am. J. Food Sci. Tech. 2013, 1, 36–41.Search in Google Scholar

Received: 2024-03-22
Accepted: 2024-08-02
Published Online: 2024-08-19
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0294/html
Scroll to top button