Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
-
Nasreddine Moulai
, Brahim Beladel , Mohammed Messaoudi, Nadjet Osmani
, Abdelkarim Brahimi , Abderrahim Malki , Rahima Lammouri und Abdelkader Ouanezar
Abstract
This study represents the investigation of major and trace elements in two indigenous plants, Cynodon dactylon (L.) and Phragmites australis, grown in the Ghardaia region of Southern Algeria. Using Instrumental Neutron Activation Analysis (INAA) technique, the research aimed to ascertain the content of essential and toxic elements in the aerial parts of these plants. Twenty eight elements as (Ag, As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, K, La, Lu, Na, Nd, Rb, Sb, Sc, Se, Sm, Sr, Tb, Th, Yb and Zn) were analysis with INAA method. Given the scarcity of data regarding essential and toxic chemical elements in food within Algeria, the study focused on evaluating the content of these elements in two plant species commonly utilized by Bedouins in traditional medicine and as fodder, as well as by professionals for decontamination and water purification purposes. The concentrations of mineral elements observed in these plants were found to be in proximity to the minimum levels recommended by the Food and Agriculture Organization (FAO). The data obtained from this investigation are deemed applicable for Algerian food purposes, offering valuable insights into the elemental composition of these plants and their potential roles in traditional and practical applications.
-
Research ethics: Not applicable.
-
Author contributions: Conceptualization: NEM, MM, BB; Methodology: MM, NO, BB; Validation: MM, AB, AM, BB; Formal analysis and investigation: NEM, MM, NO, AB; BB; All authors have read and agreed to the published version of the manuscript.
-
Competing interests: All authors declare no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Das, S.; Ray, M. K.; Panday, D.; Mishra, P. K. Role of Biotechnology in Creating Sustainable Agriculture. PLOS Sustain. Transform. 2023, 2, e0000069. https://doi.org/10.1371/journal.pstr.0000069.Suche in Google Scholar
2. Sawicka, B.; Vambol, V.; Krochmal-Marczak, B.; Messaoudi, M.; Skiba, D.; Pszczółkowski, P.; Barbaś, P.; Farhan, A. K. Green Technology as a Way of Cleaning the Environment From Petroleum Substances in South-Eastern Poland. Front. Biosci. 2022, 14, 28. https://doi.org/10.31083/j.fbe1404028.Suche in Google Scholar PubMed
3. Hemmami, H.; Seghir, B. B.; Zeghoud, S.; Amor, I. B.; Kouadri, I.; Rebiai, A.; Zaater, A.; Messaoudi, M.; Benchikha, N.; Sawicka, B.; Atanassova, M. Desert Endemic Plants in Algeria: A Review on Traditional Uses, Phytochemistry, Polyphenolic Compounds and Pharmacological Activities. Molecules 2023, 28, 1834. https://doi.org/10.3390/molecules28041834.Suche in Google Scholar PubMed PubMed Central
4. Boulanouar, B.; Abdelaziz, G.; Aazza, S.; Gago, C.; Miguel, M. G. Antioxidant Activities of Eight Algerian Plant Extracts and Two Essential Oils. Ind. Crops Prod. 2013, 46, 85–96. https://doi.org/10.1016/J.INDCROP.2013.01.020.Suche in Google Scholar
5. Zeghoud, S.; Seghir, B. B.; Kouadri, I.; Hemmami, H.; Amor, I. B.; Tliba, A.; Nani, S.; Awuchi, C. G.; Messaoudi, M.; Rebiai, A. Classification of Plants Medicine Species from Algerian Regions Using UV Spectroscopy, HPLC Chromatography, and Chemometrics Analysis. Malaysian J. Chem. 2023, 25, 126–142.10.55373/mjchem.v25i1.126Suche in Google Scholar
6. Abbass, K.; Qasim, M. Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. https://doi.org/10.1007/s11356-022-19718-6.Suche in Google Scholar PubMed PubMed Central
7. Godde, C. M.; Mason-D’Croz, D.; Mayberry, D. E.; Thornton, P. K.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain, A Review of the Evidence. Glob. Food Sec. 2021, 28, 100488. https://doi.org/10.1016/j.gfs.2020.100488.Suche in Google Scholar PubMed PubMed Central
8. Rojas-Downing, M. M.; Nejadhashemi, A. P.; Harrigan, T.; Woznicki, S. A. Climate Change and Livestock: Impacts, Adaptation, and Mitigation. Clim. Risk Manag. 2017, 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001.Suche in Google Scholar
9. Raihan, A. A Review of the Global Climate Change Impacts, Adaptation Strategies, and Mitigation Options in the Socio-Economic and Environmental Sectors. J. Environ. Sci. Econ. 2023, 2, 36–58. https://doi.org/10.56556/jescae.v2i3.587.Suche in Google Scholar
10. Loboguerrero, A. M.; Campbell, B. M.; Cooper, P. J. M.; Hansen, J. W.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. https://doi.org/10.3390/su11051372.Suche in Google Scholar
11. Ashokkumar, K.; Selvaraj, K.; Muthukrishnan, S. D. Cynodon dactylon (L.) Pers: An Updated Review of its Phytochemistry and Pharmacology. J Med Plants Res 2013, 7, 3477–3483.Suche in Google Scholar
12. Milke, J.; Gałczyńska, M.; Wróbel, J. The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. Water 2020, 12, 1770. https://doi.org/10.3390/w12061770.Suche in Google Scholar
13. Kathi, S. Phytoremediation of Heavy Metals and Petroleum Hydrocarbons Using Cynodon dactylon (L.) Pers. In Cost Effective Technologies for Solid Waste and Wastewater Treatment; Elsevier: Netherlands, 2022; pp. 135–145.10.1016/B978-0-12-822933-0.00005-XSuche in Google Scholar
14. Singh, S. K.; Kesari, A. N.; Gupta, R. K.; Jaiswal, D.; Watal, G. Assessment of Antidiabetic Potential of Cynodon dactylon Extract in Streptozotocin Diabetic Rats. J. Ethnopharmacol. 2007, 114, 174–179. https://doi.org/10.1016/j.jep.2007.07.039.Suche in Google Scholar PubMed
15. Singh, V.; Singh, A.; Singh, I. P.; Kumar, B. D. Phytomedicinal Properties of Cynodon dactylon (L.) Pers. (durva) in its Traditional Preparation and Extracts. Phytomedicine Plus 2021, 1, 100020. https://doi.org/10.1016/j.phyplu.2021.100020.Suche in Google Scholar
16. Alex, S. B., MS, S., MS, L. Evaluation of Antimicrobial, Anti-inflammatory and Cytotoxic Effects of Silver Nanoparticles Synthesised From Cynodon dactylon. Nat. Prod. Res. 2023, 38, 1–8; https://doi.org/10.1080/14786419.2023.2290154.Suche in Google Scholar PubMed
17. Al-Snafi, A. E. Chemical Constituents and Pharmacological Effects of Cynodon dactylon - A Review. IOSR J. Pharm. 2016, 6, 17–31. https://doi.org/10.9790/3013-06721731.Suche in Google Scholar
18. Rezania, S.; Park, J.; Rupani, P. F.; Darajeh, N.; Xu, X.; Shahrokhishahraki, R. Phytoremediation Potential and Control of Phragmites Australis as a Green Phytomass: An Overview. Environ. Sci. Pollut. Res. 2019, 26, 7428–7441. https://doi.org/10.1007/s11356-019-04300-4.Suche in Google Scholar PubMed
19. Zhu, L.; Zhang, D.; Yuan, C.; Ding, X.; Shang, Y.; Jiang, Y.; Zhu, G. Anti-Inflammatory and Antiviral Effects of Water-Soluble Crude Extract from Phragmites australis In Vitro. Pak. J. Pharm. Sci. 2017, 30, 1357–1362.Suche in Google Scholar
20. Ren, Y.; Cui, G.; He, L.; Yao, H.; Zi, C.; Gao, Y. Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Rhizoma phragmitis: A Narrative Review. Chin. J. Integr. Med. 2022, 28, 1127–1136. https://doi.org/10.1007/s11655-022-3572-1.Suche in Google Scholar PubMed PubMed Central
21. Sohaib, M.; Al-Barakah, F. N. I.; Migdadi, H. M.; Husain, F. M. Comparative Study Among Avicennia marina, Phragmites australis, and Moringa oleifera Based Ethanolic-Extracts for Their Antimicrobial, Antioxidant, and Cytotoxic Activities. Saudi J. Biol. Sci. 2022, 29, 111–122. https://doi.org/10.1016/j.sjbs.2021.08.062.Suche in Google Scholar PubMed PubMed Central
22. Chikowe, G. R.; Mpala, L. N.; Cock, I. E. Phragmites australis (Cav.) Trin. Ex Steud. Leaf Extracts Lack Anti-bacterial Activity and Are Non-toxic In Vitro. Pharmacogn. Commun. 2023, 13, 169–175. https://doi.org/10.5530/pc.2023.4.27.Suche in Google Scholar
23. Garg, A. N.; Kumar, A.; Nair, A. G. C.; Reddy, A. V. R. Analysis of Some Indian Medicinal Herbs by INAA. J. Radioanal. Nucl. Chem. 2007, 271, 611–619. https://doi.org/10.1007/s10967-007-0316-9.Suche in Google Scholar
24. No, A.; Committee, A. M. Z-scores and Other Scores in Chemical Proficiency Testing—Their Meanings, and Some Common Misconceptions. Anal. Methods 2016, 8, 5553–5555. https://doi.org/10.1039/c6ay90078j.Suche in Google Scholar PubMed
25. Messaoudi, M.; Begaa, S. Application of INAA Technique for Analysis of Essential Trace and Toxic Elements in Medicinal Seeds of Carum carvi L. & Foeniculum vul-gare Mill. Used in Algeria. J. Appl. Res. Med. Aromat. Plants 2018, 9, 39–45. https://doi.org/10.1016/j.jarmap.2018.01.001.Suche in Google Scholar
26. Hanis, F.; Messaoudi, M.; Bouamra, M.; Abdelhadi, S. A.; Ouanezar, A.; Malki, A.; Arbaoui, F.; Lamouri, R.; Brahimi, A.; Rebiai, A.; Zahnit, W. Analysis and Risk Assessment of Essential and Toxic Elements in Algerian Canned Tuna Fish. Biol. Trace Elem. Res. 2023, 1–12. https://doi.org/10.1007/s12011-023-03735-8.Suche in Google Scholar PubMed
27. Fathabad, A. E.; Shariatifar, N.; Moazzen, M.; Nazmara, S.; Fakhri, Y.; Alimohammadi, M.; Azari, A.; Khaneghah, A. M. Determination of Heavy Metal Content of Processed Fruit Products from Tehran’s Market Using ICP-OES: A Risk Assessment Study. Food Chem. Toxicol. 2018, 115, 436–446. https://doi.org/10.1016/j.fct.2018.03.044.Suche in Google Scholar PubMed
28. Cormick, G.; Belizán, J. M. Calcium Intake and Health. Nutrients 2019, 11, 1606. https://doi.org/10.3390/nu11071606.Suche in Google Scholar PubMed PubMed Central
29. Jomova, K.; Makova, M.; Alomar, S. Y.; Alwasel, S. H.; Nepovimova, E.; Kuca, K.; Rhodes, C. J.; Valko, M. Essential Metals in Health and Disease. Chem. Biol. Interact. 2022, 367, 110173. https://doi.org/10.1016/j.cbi.2022.110173.Suche in Google Scholar PubMed
30. Weaver, C. M. Potassium and Health. Adv. Nutr. 2013, 4, 368S–377S. https://doi.org/10.3945/an.112.003533.Suche in Google Scholar PubMed PubMed Central
31. Aaron, K. J.; Sanders, P. W. Role of Dietary Salt and Potassium Intake in Cardiovascular Health and Disease: A Review of the Evidence. Mayo Clinic Proc. 2013, 88, 987–995. https://doi.org/10.1016/j.mayocp.2013.06.005.Suche in Google Scholar PubMed PubMed Central
32. Lieu, P. T.; Heiskala, M.; Peterson, P. A.; Yang, Y. The Roles of Iron in Health and Disease. Mol. Aspects Med. 2001, 22, 1–87. https://doi.org/10.1016/s0098-2997(00)00006-6.Suche in Google Scholar PubMed
33. van Swelm, R. P. L.; Wetzels, J. F. M.; Swinkels, D. W. The Multifaceted Role of Iron in Renal Health and Disease. Nat. Rev. Nephrol. 2020, 16, 77–98. https://doi.org/10.1038/s41581-019-0197-5.Suche in Google Scholar PubMed
34. Chen, W. J.; Kung, G. P.; Gnana-Prakasam, J. P. Role of Iron in Aging Related Diseases. Antioxidants 2022, 11, 865. https://doi.org/10.3390/antiox11050865.Suche in Google Scholar PubMed PubMed Central
35. Jaques, D. A.; Ponte, B. Dietary Sodium and Human Health. Nutrients 2023, 15, 3696. https://doi.org/10.3390/nu15173696.Suche in Google Scholar PubMed PubMed Central
36. Aljuraiban, G. S.; Jose, A. P.; Gupta, P.; Shridhar, K.; Prabhakaran, D. Sodium Intake, Health Implications, and the Role of Population-Level Strategies. Nutr. Rev. 2021, 79, 351–359. https://doi.org/10.1093/nutrit/nuaa042.Suche in Google Scholar PubMed
37. Chasapis, C. T.; Loutsidou, A. C.; Spiliopoulou, C. A.; Stefanidou, M. E. Zinc and Human Health: An Update. Arch. Toxicol. 2012, 86, 521–534. https://doi.org/10.1007/s00204-011-0775-1.Suche in Google Scholar PubMed
38. Chasapis, C. T.; Ntoupa, P.-S. A.; Spiliopoulou, C. A.; Stefanidou, M. E. Recent Aspects of the Effects of Zinc on Human Health. Arch. Toxicol. 2020, 94, 1443–1460. https://doi.org/10.1007/s00204-020-02702-9.Suche in Google Scholar PubMed
39. Cefalu, W. T.; Hu, F. B. Role of Chromium in Human Health and in Diabetes. Diabetes Care 2004, 27, 2741. https://doi.org/10.2337/diacare.27.11.2741.Suche in Google Scholar PubMed
40. Pokhrel, G. R.; Pokhre, G. The Effect of Chromium on Human-Health: A Review. BMC J. Sci. Res. 2022, 5, 27–35. https://doi.org/10.3126/bmcjsr.v5i1.50669.Suche in Google Scholar
41. González-Montaña, J.-R.; Escalera-Valente, F.; Alonso, A. J.; Lomillos, J. M.; Robles, R.; Alonso, M. E. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals 2020, 10, 1855. https://doi.org/10.3390/ani10101855.Suche in Google Scholar PubMed PubMed Central
42. Messaoudi, M.; Begaa, S. Radiochemical Neutron Activation Analysis for the Determination of Selenium in Mentha spicata L. Samples Collected from Djelfa, Algeria Region. Radiochim. Acta 2020, 108, 217–222. https://doi.org/10.1515/ract-2019-3105.Suche in Google Scholar
43. Joint FAO/WHO Codex Alimentarius: General Requirements (Food Hygiene). In Codex Alimentarius General Requirements (Food Hygiene); World Health Organization: Geneva, Switzerland, 1, 2001; p. 247.Suche in Google Scholar
44. Messaoudi, M.; Benarfa, A.; Ouakouak, H.; Begaa, S. Determination of Some Chemical Elements of Common Spices Used by Algerians and Possible Health Risk Assessment. Biol. Trace Elem. Res. 2022, 200, 2498–2509. https://doi.org/10.1007/s12011-021-02817-9.Suche in Google Scholar PubMed
45. Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy Metals in Commercial Fish and Seafood Products and Risk Assessment in Adult Population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. https://doi.org/10.1038/s41598-020-70205-9.Suche in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Migration study of uranium in Beishan granite by the continuous column method
- Process development studies on the recovery of caesium specific calix-crown-6 extractant from actual spent calix solution for efficient spent solvent management
- Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
- Investigation of radioactivity concentrations and soil-to-plant transfer factors in soil samples taken from different distance zones to the Metsamor nuclear power plant
- Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
- Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
- Hydrodynamic study of a flow-rig column by means of a radiotracer technique modelling with DTS-Pro 4
- On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
- New lead barium borate glass system for radiation shielding applications: impacts of copper (II) oxide on physical, mechanical, and gamma-ray attenuation properties
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Migration study of uranium in Beishan granite by the continuous column method
- Process development studies on the recovery of caesium specific calix-crown-6 extractant from actual spent calix solution for efficient spent solvent management
- Evaluating SiO2/Al2O3/poly(acrylic acid-co-glycidyl methacrylate) composite as a novel adsorbent for cobalt(II) radionuclides
- Investigation of radioactivity concentrations and soil-to-plant transfer factors in soil samples taken from different distance zones to the Metsamor nuclear power plant
- Sorption behavior of low specific activity 99Mo on Ti- and Zr-xerogels as an alternative to fission-based 99Mo/99mTc generators
- Application of INAA technique for analysis of essential and toxic elements in two Algerian plants Cynodon dactylon L. and Phragmites australis
- Hydrodynamic study of a flow-rig column by means of a radiotracer technique modelling with DTS-Pro 4
- On transfer factors of natural radionuclides and radiological health risks assessment of some fruit samples
- New lead barium borate glass system for radiation shielding applications: impacts of copper (II) oxide on physical, mechanical, and gamma-ray attenuation properties