Home Production of Auger-electron-emitting 103mRh via a 103Pd/103mRh generator using an anion-exchange resin
Article
Licensed
Unlicensed Requires Authentication

Production of Auger-electron-emitting 103mRh via a 103Pd/103mRh generator using an anion-exchange resin

  • Tomoyuki Ohya EMAIL logo , Jun Ichinose ORCID logo , Kotaro Nagatsu , Yumi Sugo , Noriko Ishioka , Hiroshi Watabe , Masatoshi Itoh , Katsuyuki Minegishi and Ming-Rong Zhang
Published/Copyright: November 24, 2023

Abstract

Rhodium-103m is one of the most attractive Auger electron emitters for internal radiotherapy. The half-life of 103mRh is relatively short (56.114 min). Therefore, it needs to be produced using a generator for clinical use. Most studies of 103Pd/103mRh generators using anion-exchange resins were carried out over 50 years ago. However, these resins are no longer commercially available. In the present study, we tested a 103Pd/103mRh generator using alternative anion-exchange resins (i.e., IRA904, IRA410, SA20A, and SA11AL). No-carrier-added 103Pd was used to make the generators. The 103mRh product was eluted from the generators using 6 mL of 0.1 M HCl with a flow rate 0.5 mL/min. The generator made from SA11AL showed good performance, with a yield of 39 %, an impurity level of 103Pd in the product of 0.29 %, and an operation time of 14 min. This makes this generator competitive with previously developed ones.


Corresponding author: Tomoyuki Ohya, Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences (iQMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan, E-mail:

Acknowledgments

We thank the staff of RIPF, TIARA, CYRIC, especially Dr Yuki at Tohoku University for their support. We also acknowledge the speedy and kind support of the QST librarians. 103Pd was supplied by Supply Platform of Short-lived Radioisotopes, supported by JSPS Grant-in-Aid for Scientific Research on Innovative Areas, Grant Number 16H06278. This work was supported by JSPS KAKENHI, Grant Number JP23K07123. We thank Adam Brotchie, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: JSPS KAKENHI, Grant Number JP23K07123. JSPS Grant-in-Aid for Scientific Research on Innovative Areas, Grant Number 16H06278.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Cole, A. Absorption of 20-eV to 50,000-eV electron beams in air and plastic. Radiat. Res. 1969, 38, 7; https://doi.org/10.2307/3572707.Search in Google Scholar

2. Kassis, A. I., Adelstein, S. J. Radiobiologic principles in radionuclide therapy. J. Nucl. Med. 2005, 46, 4S.Search in Google Scholar

3. Bernhardt, P., Forssell-Aronsson, E., Jacobsson, L., Skarnemark, G. Low-energy electron emitters for targeted radiotherapy of small tumors. Acta Oncol. 2001, 40, 602; https://doi.org/10.1080/028418601750444141.Search in Google Scholar PubMed

4. Filosofov, D., Kurakina, E., Radchenko, V. Potent candidates for targeted Auger therapy: production and radiochemical considerations. Nucl. Med. Biol. 2021, 94–95, 1; https://doi.org/10.1016/j.nucmedbio.2020.12.001.Search in Google Scholar PubMed

5. National Nuclear Data Center. NuDat 3.0; Brookhaven National Laboratory: NY. https://www.nndc.bnl.gov/nudat3/.Search in Google Scholar

6. Bartoś, B., Kowalska, E., Bilewicz, A., Skarnemark, G. 103Ru/103mRh generator. J. Radioanal. Nucl. Chem. 2009, 279, 655; https://doi.org/10.1007/s10967-008-7346-9.Search in Google Scholar

7. Bedrossian, P., Lengyel, T., Törkö, J. Rapid milking system for obtaining 57 min 103mRh. Atompraxis 1968, 14, 193.Search in Google Scholar

8. Skarnemark, G., Ödegaard-Jensen, A., Nilsson, J., Bartos, B., Kowalska, E., Bilewicz, A., Bernhardt, P. Production of 103mRh for cancer therapy. J. Radioanal. Nucl. Chem. 2009, 280, 371; https://doi.org/10.1007/s10967-009-0529-1.Search in Google Scholar

9. Jensen, A. I., Zhuravlev, F., Severin, G., Magnus, C. B., Fonslet, J., Köster, U., Jensen, M. A solid support generator of the Auger electron emitter rhodium-103m from [103Pd] palladium. Appl. Radiat. Isot. 2020, 156, 108985; https://doi.org/10.1016/j.apradiso.2019.108985.Search in Google Scholar PubMed

10. Berk, H. W. The Development and Evaluation of a 103Pd–103mRh Radionuclide Generator. A doctoral thesis submitted to the faculty of Purdue University, 1971.Search in Google Scholar

11. Mamadaliev, H., Levin, V. I., Malinin, A. B. A generator of rhodium-103m. Radiokhimiya 1978, 20, 772.Search in Google Scholar

12. Ohya, T., Nagatsu, K., Minegishi, K., Zhang, M.-R. Separation of 103Pd from a Rh target using an alloying pretreatment with bismuth. Radiochim. Acta 2022, 110, 251; https://doi.org/10.1515/ract-2021-1117.Search in Google Scholar

13. Sudár, S., Cserpák, F., Qaim, S. M. Measurements and nuclear model calculations on proton-induced reactions on 103Rh up to 40 MeV: evaluation of the excitation function of the 103Rh(p,n)103Pd reaction relevant to the production of the therapeutic radionuclide 103Pd. Appl. Radiat. Isot. 2002, 56, 821, https://doi.org/10.1016/s0969-8043(02)00054-4.Search in Google Scholar PubMed

14. Ohya, T., Nagatsu, K., Hanyu, M., Minegishi, K., Zhang, M.-R. Separation of radiosilver from a cyclotron-irradiated palladium target. Radiochim. Acta 2020, 108, 641; https://doi.org/10.1515/ract-2019-3211.Search in Google Scholar

15. Dash, A., Chakravarty, R. Radionuclide generators: the prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am. J. Nucl. Med. Mol. Imaging 2019, 9, 30.Search in Google Scholar

16. Bernhard, V. H., Lieser, K. H. Separation of 103mRh from 103Pd in the form of an isotope generator. Radiochim. Acta 1970, 13, 134; https://doi.org/10.1524/ract.1970.13.3.134.Search in Google Scholar

17. Shimojima, H. The behavior of rhodium(iii) in the ion-exchange resin. J. Chem. Soc. Jpn. 1960, 81, 564; https://doi.org/10.1246/nikkashi1948.81.4_564.Search in Google Scholar

18. Halpern, A., Stöcklin, G. Chemical and biological consequences of β-decay part 1. Radiat. Environ. Biophys. 1977, 14, 167; https://doi.org/10.1007/bf01323937.Search in Google Scholar PubMed

19. Kassis, A. I. The amazing world of Auger electrons. Int. J. Radiat. Biol. 2004, 80, 789; https://doi.org/10.1080/09553000400017663.Search in Google Scholar PubMed

20. Katsaros, N., Anagnostopoulou, A. Rhodium and its compounds as potential agents in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 297; https://doi.org/10.1016/s1040-8428(01)00222-0.Search in Google Scholar PubMed

21. Komor, A. C., Schneider, C. J., Weidmann, A. G., Barton, J. K. Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization. J. Am. Chem. Soc. 2012, 134, 19223; https://doi.org/10.1021/ja3090687.Search in Google Scholar PubMed PubMed Central

22. Hofer, K. G., Hughes, W. L. Radiotoxicity of intranuclear tritium, 125Iodine and 131Iodine. Radiat. Res. 1971, 47, 94; https://doi.org/10.2307/3573291.Search in Google Scholar

23. Kassis, A. I., Sastry, K. S. R., Adelstein, S. J. Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: implications of localized energy deposition by Auger processes. Radiat. Res. 1987, 109, 78; https://doi.org/10.2307/3576869.Search in Google Scholar

24. Kassis, A. I., Van den Abbeele, A. D., Wen, P. Y. C., Baranowska-Kortylewicz, J., Aaronson, R. A., DeSisto, W. C., Lampson, L. A., Black, P. M., Adelstein, S. J. Specific uptake of the Auger electron-emitting thymidine analogue 5-[123I/125I]iodo-2′-deoxyuridine in rat brain tumors: diagnostic and therapeutic implications in humans. Cancer Res. 1990, 50, 5199.Search in Google Scholar

25. Kassis, A. I., Harapanhalli, R. S., Adelstein, S. J. Strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125: direct compared to indirect effects. Radiat. Res. 1999, 152, 530; https://doi.org/10.2307/3580150.Search in Google Scholar

26. Lee, H., Riad, A., Martorano, P., Mansfield, A., Samanta, M., Batra, V., Mach, R. H., Maris, J. M., Pryma, D. A., Makvandi, M. PARP-1-targeted Auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma. J. Nucl. Med. 2020, 61, 850; https://doi.org/10.2967/jnumed.119.233965.Search in Google Scholar PubMed PubMed Central

27. Rebischung, C., Hoffmann, D., Stéfani, L., Desruet, M. D., Wang, K., Adelstein, S. J., Artignan, X., Vincent, F., Gauchez, A. S., Zhang, H., Fagret, D., Vuillez, J., Kassis, A. I., Balosso, J. First human treatment of resistant neoplastic meningitis by intrathecal administration of MTX plus 125IUdR. Int. J. Radiat. Biol. 2008, 84, 1123; https://doi.org/10.1080/09553000802395535.Search in Google Scholar PubMed

Received: 2023-10-06
Accepted: 2023-11-06
Published Online: 2023-11-24
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0238/html
Scroll to top button