Abstract
Effective treatment of uranium-containing wastewater is of great significance to the sustainable development of nuclear power and the protection of ecological environment. In this study, a highly efficient uranium adsorbent, graphene oxide (GO)/nano-hydroxyapatite (nHA) composite microspheres (nHA@rGO) was synthesized, which could effectively remove uranium from aqueous solution. Under the condition of pH = 3.5, T = 298 K, the maximum adsorption capacity reached 1672.96 mg/g. The results of batch experiments showed that the adsorption capacity of nHA@rGO microspheres was higher than that of nHA microspheres, indicating the enhancement of GO. The adsorption kinetics conformed to the pseudo second-order model. The changes of nHA@rGO microspheres before and after uranium adsorption were analyzed by FT-IR, XPS and XRD. The mechanisms of U(VI) ions adsorption onto nHA@rGO microspheres involved precipitation, surface complexation and ion exchange, in which the hydroxyl and phosphoric acid groups played important roles. The results showed that the prepared nHA@rGO microspheres can be used as an efficient and promising adsorbent for the treatment of uranium-containing wastewater.
Funding source: National Key Research and Development Program
Award Identifier / Grant number: 2020YFC1806604; 2016YFC1402507
Acknowledgments
The research was supported by the National Key Research and Development Program (2020YFC1806604; 2016YFC1402507) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13026).
-
Research ethics: Not applicable.
-
Author contributions: Wenjun Wu: Investigation, Formal analysis, Writing – original draft. Jianlong Wang: Conceptualization, Writing - review & editing Funding acquisition, Methodology, Supervision. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: National Key Research and Development Program (2020YFC1806604; 2016YFC1402507).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Wang, J. L., Zhuang, S. T. Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview. Rev. Environ. Sci. Biotechnol. 2019, 18, 437–452; https://doi.org/10.1007/s11157-019-09507-y.Search in Google Scholar
2. Zhuang, S. T., Cheng, R., Kang, M., Wang, J. L. Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J. Clean. Prod. 2018, 188, 655–661; https://doi.org/10.1016/j.jclepro.2018.04.047.Search in Google Scholar
3. Chen, Y. W., Wang, J. L. Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl. Eng. Des. 2012, 242, 445–451; https://doi.org/10.1016/j.nucengdes.2011.10.059.Search in Google Scholar
4. Chen, Y. W., Wang, J. L. Removal of cesium from radioactive wastewater using magnetic chitosan beads cross-linked with glutaraldehyde. Nucl. Sci. Technol. 2016, 27, 43; https://doi.org/10.1007/s41365-016-0033-6.Search in Google Scholar
5. Wang, J. L., Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 2006, 24, 427–451; https://doi.org/10.1016/j.biotechadv.2006.03.001.Search in Google Scholar PubMed
6. Wang, J. L., Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226; https://doi.org/10.1016/j.biotechadv.2008.11.002.Search in Google Scholar PubMed
7. Dhanya, V., Arunraj, B., Rajesh, N. Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the sequestration of uranium from ground water. RSC Adv. 2022, 12, 13511–13522; https://doi.org/10.1039/d2ra02031a.Search in Google Scholar PubMed PubMed Central
8. Li, Y., Dai, Y., Gao, Z., Li, Z. Y., He, F. Q., Xu, L., Tao, Q. Q. Adsorption of uranium onto amidoxime-group mesoporous biomass carbon: kinetics, isotherm and thermodynamics. J. Radioanal. Nucl. Chem. 2022, 331, 353–364; https://doi.org/10.1007/s10967-021-08115-x.Search in Google Scholar
9. Wang, J. L., Chen, C. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 2014, 160, 129–141; https://doi.org/10.1016/j.biortech.2013.12.110.Search in Google Scholar PubMed
10. Zhu, Y. H., Hu, J., Wang, J. L. Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog. Nucl. Energy 2014, 71, 172–178; https://doi.org/10.1016/j.pnucene.2013.12.005.Search in Google Scholar
11. Wang, J. L., Zhuang, S. T. Chitosan-based materials: preparation, modification and application. J. Clean. Prod. 2022, 355, 131825; https://doi.org/10.1016/j.jclepro.2022.131825.Search in Google Scholar
12. Patel, K., Sutar, A. K., Maharana, T. Microwave-assisted preparation of carboxylic graphene oxide–chitosan composite for adsorption of uranium and heavy toxic metals in water samples. Sep. Sci. Technol. 2022, 57, 2242–2260; https://doi.org/10.1080/01496395.2022.2045320.Search in Google Scholar
13. Zhao, Y., Li, J. W., Wu, S. J., Cheng, H. M. Ion-imprinted guanidine-functionalized zeolite molecular sieves enhance the adsorption selectivity and antibacterial properties for uranium extraction. RSC Adv. 2022, 12, 15470–15478; https://doi.org/10.1039/d2ra01651f.Search in Google Scholar PubMed PubMed Central
14. Zhang, G. G., Fang, Y. G., Wang, Y. D., Liu, L. J., Mei, D. C., Ma, F. Q., Meng, Y. J., Dong, H. X., Zhang, C. H. Synthesis of amino acid modified mil-101 and efficient uranium adsorption from water. J. Mol. Liq. 2022, 349, 118095; https://doi.org/10.1016/j.molliq.2021.118095.Search in Google Scholar
15. Liu, H. J., Wang, X., Li, Y. J., Min, Z. F., You, H., Xie, S. B., Liu, Y. J., Yang, H. M. Efficient uranium(VI) adsorbing bioinspired nano-sized hydroxyapatite composites: synthesis, tuning, and adsorption mechanism. Environ. Sci. Pollut. Res. 2022, 30, 18156–18167; https://doi.org/10.1007/s11356-022-23492-w.Search in Google Scholar PubMed
16. Boyapati, P. C. S., Srinivas, K., Akhil, S., Bollikolla, H. B., Chandu, B. A comprehensive review on novel graphene–hydroxyapatite nanocomposites for potential bioimplant applications. Mater. Chem. Phys. 2023, 296, 127331; https://doi.org/10.1002/slct.202204585.Search in Google Scholar
17. Fuster-Gomez, S., Cortazar, I. C., Vidaurre, A., Campillo-Fernandez, A. J. Biomimetic growth of hydroxyapatite in hybrid polycaprolactone/graphene oxide ultra-porous scaffolds. ACS Omega 2023, 8, 7904–7912; https://doi.org/10.1021/acsomega.2c07656.Search in Google Scholar PubMed PubMed Central
18. Huang, S. Q., Chen, C. C., Zhao, Z. B., Jia, L. Y., Zhang, Y. Highly efficient separation of uranium from wastewater by in situ synthesized hydroxyapatite modified coal fly ash composite aerogel. J. Ind. Eng. Chem. 2023, 118, 418–431; https://doi.org/10.1016/j.jiec.2022.11.026.Search in Google Scholar
19. Xiong, T., Li, Q. C., Liao, J., Zhang, Y., Zhu, W. K. Highly enhanced adsorption performance to uranium(VI) by facile synthesized hydroxyapatite aerogel. J. Hazard. Mater. 2022, 423, 127184; https://doi.org/10.1016/j.jhazmat.2021.127184.Search in Google Scholar PubMed
20. Liu, Y. X., Xu, Z. Y., Xia, C. J., Hu, B. W., Zeng, W. T., Zhu, Y. L. Extremely effective removal of U(VI) from aqueous solution by 3d flower-like calcium phosphate synthesized using mussel shells and rice bran. Sep. Purif. Technol. 2023, 310, 123235; https://doi.org/10.1016/j.seppur.2023.123235.Search in Google Scholar
21. Ouassel, S., Chegrouche, S., Nibou, D., Melikchi, R., Aknoun, A., Mellah, A. Application of response surface methodology for uranium(VI) adsorption using hydroxyapatite prepared from eggshells waste material: study of influencing factors and mechanism. Water Sci. Technol. 2021, 83, 1198–1216; https://doi.org/10.2166/wst.2021.022.Search in Google Scholar PubMed
22. Watanabe, T., Guilhen, S. N., Marumo, J. T., de Souza, R. P., de Araujo, L. G. Uranium biosorption by hydroxyapatite and bone meal: evaluation of process variables through experimental design. Environ. Sci. Pollut. Res. 2022, 29, 79816–79829; https://doi.org/10.1007/s11356-021-17551-x.Search in Google Scholar PubMed
23. Kong, L. J., Ruan, Y., Zheng, Q. Y., Su, M. H., Diao, Z. H., Chen, D. Y., Hou, L. A., Chang, X. Y., Shih, K. M. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J. Hazard. Mater. 2020, 382, 120784; https://doi.org/10.1016/j.jhazmat.2019.120784.Search in Google Scholar PubMed
24. Tang, M., Shen, J., Xia, X., Jin, B., Chen, K., Zeng, T. A novel microbial induced synthesis of hydroxyapatite with highly efficient adsorption of uranyl(VI). Colloid. Surface. A. 2022, 635, 128046; https://doi.org/10.1016/j.colsurfa.2021.128046.Search in Google Scholar
25. Wang, Y., Chen, B. W., Xiong, T., Zhang, Y., Zhu, W. K. Highly efficient uranium capture from wastewater by hydroxyapatite aerogels prepared with konjac gum as template. J. Water. Process. Eng. 2022, 48, 102919; https://doi.org/10.1016/j.jwpe.2022.102919.Search in Google Scholar
26. Hui, Z., Yi, X., Wang, X. Q., Huan, Y., Wang, Y. B., Zhang, Y. K. Efficient removal of uranium in aqueous solution by Al-doped hydroxyapatite: static/dynamic adsorption behaviors and mechanism study. Environ. Technol. Inno. 2022, 25, 102103; https://doi.org/10.1016/j.eti.2021.102103.Search in Google Scholar
27. Huang, S. Q., Chen, C. C., Zhao, Z. B., Jia, L. Y., Zhang, Y. In situ synthesis of magnesium-doped hydroxyapatite aerogel for highly efficient U(VI) separation with ultra-high adsorption capacity and excellent recyclability. Chemosphere 2023, 312, 137226; https://doi.org/10.1016/j.chemosphere.2022.137226.Search in Google Scholar PubMed
28. Chen, L., Wang, Y. Q., Cao, X. H., Zhang, Z. B., Liu, Y. H. Effect of doping cation on the adsorption properties of hydroxyapatite to uranium. J. Solid State Chem. 2023, 317, 123687; https://doi.org/10.1016/j.jssc.2022.123687.Search in Google Scholar
29. Xuan, K., Wang, J., Gong, Z. H., Wang, X. G., Li, J., Guo, Y. D., Sun, Z. X. Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium(VI) from wastewater. J. Hazard. Mater. 2022, 426, 127834; https://doi.org/10.1016/j.jhazmat.2021.127834.Search in Google Scholar PubMed
30. Ahmed, W., Nunez-Delgado, A., Mehmood, S., Ali, S., Qaswar, M., Shakoor, A., Chen, D. Y. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: adsorption behavior and mechanism. Environ. Res. 2021, 201, 111518; https://doi.org/10.1016/j.envres.2021.111518.Search in Google Scholar PubMed
31. Liao, J., He, X. S., Zhang, Y., Zhang, L., He, Z. B. The construction of magnetic hydroxyapatite-functionalized pig manure-derived biochar for the efficient uranium separation. Chem. Eng. J. 2023, 457, 141367; https://doi.org/10.1016/j.cej.2023.141367.Search in Google Scholar
32. Guo, Y. D., Gong, Z. H., Li, C. X., Gao, B., Li, P., Wang, X. G., Zhang, B. C., Li, X. M. Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: a synthetic experimental and mechanism studies. Chem. Eng. J. 2020, 392, 123682; https://doi.org/10.1016/j.cej.2019.123682.Search in Google Scholar
33. Ma, M., Deng, H., Ren, Z. Y., Zhong, X. High-speed and efficient removal of uranium (vi) from aqueous solution by hydroxyapatite-modified ordered mesoporous carbon (CMK-3). Environ. Sci. Pollut. Res. 2022, 29, 78989–79001; https://doi.org/10.1007/s11356-022-21351-2.Search in Google Scholar PubMed
34. Al-Noaman, A., Rawlinson, S. C. F. A novel bioactive glass/graphene oxide composite coating for a polyether ether ketone-based dental implant. Eur. J. Oral. Sci. 2023, 131, e12915; https://doi.org/10.1111/eos.12915.Search in Google Scholar PubMed
35. Arici, S., Kacmaz, E. G., Kamali, A. R., Ege, D. Influence of graphene oxide and carbon nanotubes on physicochemical properties of bone cements. Mater. Chem. Phys. 2023, 293, 126961; https://doi.org/10.1016/j.matchemphys.2022.126961.Search in Google Scholar
36. Raucci, M. G., Giugliano, D., Longo, A., Zeppetelli, S., Carotenuto, G., Ambrosio, L. Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J. Tissue. Eng. Regen. Med. 2017, 11, 2204–2216; https://doi.org/10.1002/term.2119.Search in Google Scholar PubMed
37. Xing, M., Xu, L. J., Wang, J. L. Mechanism of Co(II) adsorption by zero valent iron/graphene nanocomposite. J. Hazard. Mater. 2016, 301, 286–296; https://doi.org/10.1016/j.jhazmat.2015.09.004.Search in Google Scholar PubMed
38. Xu, L. J., Wang, J. L. The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1042–1105; https://doi.org/10.1080/10643389.2017.1342514.Search in Google Scholar
39. Hakimi, F., Abroon, M., Sadighian, S., Ramazani, A. Evaluation of bone-like apatite biomineralization on biomimetic graphene oxide/hydroxyapatite nanocomposite. Inorg. Chem. Commun. 2023, 149, 110450; https://doi.org/10.1016/j.inoche.2023.110450.Search in Google Scholar
40. Williams, A. G., Moore, E., Thomas, A., Johnson, J. A. Graphene-based materials in dental applications: antibacterial, biocompatible, and bone regenerative properties. Int J. Biomater. 2023, 2023, 1–18; https://doi.org/10.1155/2023/8803283.Search in Google Scholar PubMed PubMed Central
41. Nan, Y., Wang, J. L., Chang, X., Shao, K. J., Lin, Y. C., Qian, L. J., Li, Z., Hu, P. Z. Functionalized graphene oxide/sodium alginate beads with ion responsiveness for uranium trapping. Carbohyd. Polym. 2023, 300, 120259; https://doi.org/10.1016/j.carbpol.2022.120259.Search in Google Scholar PubMed
42. Su, M. H., Liu, Z. Q., Wu, Y. H., Peng, H. R., Ou, T., Huang, S., Song, G., Kong, L. J., Chen, N., Chen, D. Y. Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Environ. Pollut. 2021, 268, 115786; https://doi.org/10.1016/j.envpol.2020.115786.Search in Google Scholar PubMed
43. Iacoboni, I., Perrozzi, F., Macera, L., Taglieri, G., Ottaviano, L., Fioravanti, G. In situ syntheses of hydroxyapatite-grafted graphene oxide composites. J. Biomed. Mater. Res. A 2019, 107, 2026–2039; https://doi.org/10.1002/jbm.a.36716.Search in Google Scholar PubMed
44. Chen, C., Sun, X. D., Pan, W., Hou, Y., Liu, R., Jiang, X., Zhang, L. Graphene oxide-templated synthesis of hydroxyapatite nanowhiskers to improve the mechanical and osteoblastic performance of poly(lactic acid) for bone tissue regeneration. ACS Sustain. Chem. Eng. 2018, 6, 3862–3869; https://doi.org/10.1021/acssuschemeng.7b04192.Search in Google Scholar
45. Li, Y. L., Liu, C. L., Zhai, H. L., Zhu, G. X., Pan, H. H., Xu, X. R., Tang, R. K. Biomimetic graphene oxide-hydroxyapatite composites via in situ mineralization and hierarchical assembly. RSC Adv. 2014, 4, 25398–25403; https://doi.org/10.1039/c4ra02821j.Search in Google Scholar
46. Shuai, C. J., Peng, B., Feng, P., Yu, L., Lai, R. L., Min, A. J. In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J. Adv. Res. 2022, 35, 13–24; https://doi.org/10.1016/j.jare.2021.03.009.Search in Google Scholar PubMed PubMed Central
47. Shi, Q. P., Su, M. H., Yuvaraja, G., Tang, J. F., Kong, L. J., Chen, D. Y. Development of highly efficient bundle-like hydroxyapatite towards abatement of aqueous U(VI) ions: mechanism and economic assessment. J. Hazard. Mater. 2020, 394, 122550; https://doi.org/10.1016/j.jhazmat.2020.122550.Search in Google Scholar PubMed
48. Wang, M. L., Wu, S. J., Guo, J. N., Liao, Z. S., Yang, Y. Q., Chen, F. R., Zhu, R. L. Enhanced immobilization of uranium(VI) during the conversion of microbially induced calcite to hydroxylapatite. J. Hazard. Mater. 2022, 434, 128936; https://doi.org/10.1016/j.jhazmat.2022.128936.Search in Google Scholar PubMed
49. Ahmad, M., Yang, K., Li, L. X., Fan, Y. H., Shah, T., Zhang, Q. Y., Zhang, B. L. Modified tubular carbon nanofibers for adsorption of uranium(VI) from water. Acs. Appl. Nano. Mater. 2020, 3, 6394–6405; https://doi.org/10.1021/acsanm.0c00837.Search in Google Scholar
50. Guo, X., Wang, J. L. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 2019, 296, 111850; https://doi.org/10.1016/j.molliq.2019.111850.Search in Google Scholar
51. Wang, J. L., Guo, X. Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279; https://doi.org/10.1016/j.chemosphere.2020.127279.Search in Google Scholar PubMed
52. Li, P., Chen, P., Liu, Z. P., Nie, S. Y., Wang, X. G., Wang, G. H., Zhang, W. M., Chen, H., Wang, L. Z. Highly efficient elimination of uranium from wastewater with facilely synthesized Mg–Fe layered double hydroxides: optimum preparation conditions and adsorption kinetics. Ann. Nucl. Energy 2020, 140, 107140; https://doi.org/10.1016/j.anucene.2019.107140.Search in Google Scholar
53. Yang, L. R., Luo, X., Yan, L., Zhou, Y. W., Yu, S. Q., Ju, H., Wang, Y., Zhang, L. Efficient selective adsorption of uranium using a novel eco-friendly chitosan-grafted adenosine 5′-monophosphate foam. Carbohyd. Polym. 2022, 285, 119157; https://doi.org/10.1016/j.carbpol.2022.119157.Search in Google Scholar PubMed
54. Guo, X., Wang, J. L. A general kinetic model for adsorption: theoretical analysis and modeling. J. Mol. Liq. 2019a, 288, 111100; https://doi.org/10.1016/j.molliq.2019.111100.Search in Google Scholar
55. Wang, J. L., Guo, X. Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156; https://doi.org/10.1016/j.jhazmat.2020.122156.Search in Google Scholar PubMed
56. Wang, J. L., Guo, X. Rethinking of the intraparticle diffusion adsorption kinetics model: interpretation, solving methods and applications. Chemosphere 2022, 309, 136732; https://doi.org/10.1016/j.chemosphere.2022.136732.Search in Google Scholar PubMed
57. Wang, J. L., Guo, X. Adsorption kinetics and isotherm models of heavy metals by various adsorbents: an overview. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1837–1865; https://doi.org/10.1080/10643389.2023.2221157.Search in Google Scholar
58. Wang, Y., Liu, X. L., Xie, Y. R., Chen, B. W., Zhang, Y. Effective and rapid adsorption of uranium via synergy of complexation and cation-pi interaction. J. Radioanal. Nucl. Chem. 2022, 331, 1115–1126; https://doi.org/10.1007/s10967-021-08179-9.Search in Google Scholar
59. Biedrzycka, A., Skwarek, E., Hanna, U. M. Hydroxyapatite with magnetic core: synthesis methods, properties, adsorption and medical applications. Adv. Colloid. Interfac. 2021, 291, 102401; https://doi.org/10.1016/j.cis.2021.102401.Search in Google Scholar PubMed
60. Wu, Y. H., Chen, D. Y., Kong, L. J., Tsang, D. C. W., Su, M. H. Rapid and effective removal of uranium(VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. J. Hazard. Mater. 2019, 371, 397–405; https://doi.org/10.1016/j.jhazmat.2019.02.110.Search in Google Scholar PubMed
61. Zheng, N. C., Yin, L. Y., Su, M. H., Liu, Z. Q., Tsang, D. C. W., Chen, D. Y. Synthesis of shape and structure-dependent hydroxyapatite nanostructures as a superior adsorbent for removal of U(VI). Chem. Eng. J. 2020, 384, 123262; https://doi.org/10.1016/j.cej.2019.123262.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Efficient removal of U(VI) from aqueous solution by hydroxyapatite/graphene oxide composite microspheres
- Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application
- Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions
- Production of Auger-electron-emitting 103mRh via a 103Pd/103mRh generator using an anion-exchange resin
- Determination of rare earth elements in Algerian bentonites using k0-NAA method
- Determination of natural and artificial radioactivity levels and radiation hazard indices for soil samples in Kırşehir
- Gamma-radiation levels along the main Karakorum thrust area of Northern Pakistan
Articles in the same Issue
- Frontmatter
- Original Papers
- Efficient removal of U(VI) from aqueous solution by hydroxyapatite/graphene oxide composite microspheres
- Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application
- Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions
- Production of Auger-electron-emitting 103mRh via a 103Pd/103mRh generator using an anion-exchange resin
- Determination of rare earth elements in Algerian bentonites using k0-NAA method
- Determination of natural and artificial radioactivity levels and radiation hazard indices for soil samples in Kırşehir
- Gamma-radiation levels along the main Karakorum thrust area of Northern Pakistan