Home Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions
Article
Licensed
Unlicensed Requires Authentication

Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions

  • Mohamed Ragab Abass ORCID logo EMAIL logo , Maha Ali Youssef and Marwa Ahmed Eid
Published/Copyright: November 24, 2023

Abstract

This work is interested in the sorption and separation of 131Ba, 109Cd, 152+154Eu, and 97Zr from radioactive solutions onto barium molybdenum titanate loaded on carboxy methyl cellulose (BaMoTi@CMC) composites. In this work, different samples of BaMoTi@CMC composites were fabricated by the co-precipitation method and characterized using different analytical tools such as X-ray diffraction (XRD), attenuated total reflectance (ATR), and scanning electron microscope (SEM). The batch sorption investigations on 131Ba, 109Cd, 152+154Eu, and 97Zr include the influence of time, pH, and metal ion concentrations. The data reveal that S-3 has higher sorption efficiency than S-2 under all conditions. Isotherm is studied by Langmuir and Freundlich models. Binary systems data confirm that Cd(ii), Ba(ii), and Zr(iv) can be separated from Cd–Eu, Ba–Eu, and Zr–Eu binary systems using S-2 and S-3 at different pHs. Finally, the data prove that Zr(iv) and Ba(ii) can be easily separated from tertiary systems (Zr–Ba–Cd) onto S-2 and S-3 at pH 2.


Corresponding author: Mohamed Ragab Abass, Nuclear Fuel Technology Department, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo, Egypt, E-mail:

Acknowledgments

Great thanks to all members of the Nuclear Fuel Technology Department, Analytical Chemistry and Control Department, and Nuclear Fuel Chemistry Department, Egyptian Atomic Energy Authority for supporting this work.

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Informed consent: Informed consent was obtained from all individuals included in this study.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved its submission.

  4. Competing interests: The authors state no conflicts of interest.

  5. Research funding: This work was funded by Egyptian Atomic Energy Authority.

References

1. Gupta, N. K., Sengupta, A., Gupta, A., Sonawane, J. R., Sahoo, H. Biosorption-an alternative method for nuclear waste management: a critical review. J. Environ. Chem. Eng. 2018, 6, 2159; https://doi.org/10.1016/j.jece.2018.03.021.Search in Google Scholar

2. Brugge, D., deLemos, J. L., Oldmixon, B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev. Environ. Health 2005, 20, 177; https://doi.org/10.1515/reveh.2005.20.3.177.Search in Google Scholar PubMed

3. Mansy, M. S., Eid, M. A., Breky, M. M. E., Abass, M. R. Sorption behavior of 137Cs, 152+154Eu and 131Ba from aqueous solutions using inorganic sorbent loaded on talc. J. Radioanal. Nucl. Chem. 2023, 332, 2971; https://doi.org/10.1007/s10967-023-08977-3.Search in Google Scholar

4. Lee, W. E., Ojovan, M. I., Stennett, M. C., Hyatt, N. C. Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 2006, 105, 3; https://doi.org/10.1179/174367606x81669.Search in Google Scholar

5. Abass, M. R., El-Kenany, W. M., El-Masry, E. H. High efficient removal of lead(ii) and cadmium(ii) ions from multi-component aqueous solutions using polyacrylic acid acrylonitrile talc nanocomposite. Environ. Sci. Pollut. Res. 2022, 29, 72929; https://doi.org/10.1007/s11356-022-21023-1.Search in Google Scholar PubMed PubMed Central

6. Youssef, M. A., El-Naggar, M. R., Ahmed, I. M., Attallah, M. F. Batch kinetics of 134Cs and 152+154Eu radionuclides onto poly-condensed feldspar and perlite based sorbents. J. Hazard. Mater. 2021, 403, 123945; https://doi.org/10.1016/j.jhazmat.2020.123945.Search in Google Scholar PubMed

7. Naymushina, O. S., Boguslavsky, A. E. Sorption capacity of technogenic peat toward uranium ions at preservation of low-level radioactive waste storages. In Int. Multidiscip. Sci. GeoConference SGEM, Vol. 20, 2020; p. 725.10.5593/sgem2020/5.1/s20.091Search in Google Scholar

8. Omar, H. A., Aziz, M., Shakir, K. Adsorption of U(vi) from dilute aqueous solutions onto peat moss. Radiochim. Acta 2007, 95, 17; https://doi.org/10.1524/ract.2007.95.1.17.Search in Google Scholar

9. Hassan, H. S., Kenawy, S. H., El-Bassyouni, G. T., Hamzawy, E. M. A., Hassan, R. S. Sorption behavior of cesium and europium radionuclides onto nano-sized calcium silicate. Part. Sci. Technol. 2020, 38, 105; https://doi.org/10.1080/02726351.2018.1508101.Search in Google Scholar

10. Abass, M. R., El-Masry, E. H., El-Kenany, W. M. Gamma irradiation-induced preparation of polyacrylonitrile acrylamide nano-silica for removal of some hazardous metals. J. Inorg. Organomet. Polym. Mater. 2022, 32, 536; https://doi.org/10.1007/s10904-021-02156-1.Search in Google Scholar

11. Touite, A., Labied, S., Guedira, T. Treatment of organic radioactive waste by stabilization/solidification into a cement/alumina based mortar. Mater. Today: Proc. 2022, 58, 1485; https://doi.org/10.1016/j.matpr.2022.02.567.Search in Google Scholar

12. Marschke, S., Rish, W., Mauro, J. Radiation exposures from the beneficial use of alumina production residue. J. Air Waste Manage. Assoc. 2019, 69, 1479; https://doi.org/10.1080/10962247.2019.1670281.Search in Google Scholar PubMed

13. Sunaiwi, R., Razab, M. K. A. A., Nawi, N. M., Khaizul, A. T., Azhar, M. A., Samsuddin, N. Y., Shukri, S. I., Noor, A. M., Abdullah, N. H., Mohammed, A. Radioactive decontamination using bamboo activated carbon for healthy environment in nuclear medicine. In IOP Conference Series: Earth and Environmental Science; IOP Publishing, 2022.10.1088/1755-1315/1102/1/012001Search in Google Scholar

14. Makarov, A. V., Safonov, A. V., Konevnik, Y. V., Teterin, Y. A., Maslakov, K. I., Teterin, A. Y., Karaseva, Y. Y., German, K. E., Zakharova, E. V. Activated carbon additives for technetium immobilization in bentonite-based engineered barriers for radioactive waste repositories. J. Hazard. Mater. 2021, 401, 123436; https://doi.org/10.1016/j.jhazmat.2020.123436.Search in Google Scholar PubMed

15. Wang, C., Myshkin, V. F., Khan, V. A., Panamareva, A. N. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J. Radioanal. Nucl. Chem. 2022, 331, 3401; https://doi.org/10.1007/s10967-022-08394-y.Search in Google Scholar

16. Misaelides, P. Clay minerals and zeolites for radioactive waste immobilization and containment: a concise overview. In Modified Clay and Zeolite Nanocomposite Materials; Elsevier: Amsterdam, 2019.10.1016/B978-0-12-814617-0.00004-9Search in Google Scholar

17. Akyil, S., Aslani, M., Eral, M. Sorption characteristics of uranium onto composite ion exchangers. J. Radioanal. Nucl. Chem. 2003, 256, 45.Search in Google Scholar

18. Jiménez-Reyes, M., Almazán-Sánchez, P. T., Solache-Ríos, M. Radioactive waste treatments by using zeolites. A short review. J. Environ. Radioact. 2021, 233, 106610; https://doi.org/10.1016/j.jenvrad.2021.106610.Search in Google Scholar PubMed

19. Zhang, X., Liu, Y. Nanomaterials for radioactive wastewater decontamination. Environ. Sci.: Nano 2020, 7, 1008; https://doi.org/10.1039/c9en01341e.Search in Google Scholar

20. Sengupta, A., Gupta, N. K. MWCNTs based sorbents for nuclear waste management: a review. J. Environ. Chem. Eng. 2017, 5, 5099; https://doi.org/10.1016/j.jece.2017.09.054.Search in Google Scholar

21. Fan, F. L., Qin, Z., Bai, J., Rong, W. D., Fan, F. Y., Tian, W., Wu, X. L., Wang, Y., Zhao, L. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J. Environ. Radioact. 2012, 106, 40; https://doi.org/10.1016/j.jenvrad.2011.11.003.Search in Google Scholar PubMed

22. Abass, M. R., Eid, M. A., Ibrahim, A. B. Silico antimonate nanocomposite material: I-preparation, characterization and its application for separation of strontium and rubidium from aqueous solutions. Int. J. Environ. Anal. Chem. 2022, 1, 1–16; https://doi.org/10.1080/03067319.2022.2071611.Search in Google Scholar

23. Rajasulochana, P., Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour.-Effic. Technol. 2016, 2, 175; https://doi.org/10.1016/j.reffit.2016.09.004.Search in Google Scholar

24. Pozo, A. A. P., Monroy-Guzmán, F., Gómora-Herrera, D. R., Navarrete-Bolaños, J., Bustos, E. B. Radioactive decontamination of metal surfaces using peelable films made from chitosan gels and chitosan/magnetite nanoparticle composites. Prog. Nucl. Energy 2022, 144, 104088; https://doi.org/10.1016/j.pnucene.2021.104088.Search in Google Scholar

25. Hamza, M. F., Gamal, A., Hussein, G., Nagar, M. S., Abdel-Rahman, A. A., Wei, Y., Guibal, E. Uranium(vi) and zirconium(iv) sorption on magnetic chitosan derivatives – effect of different functional groups on separation properties. J. Chem. Technol. Biotechnol. 2019, 94, 3866; https://doi.org/10.1002/jctb.6185.Search in Google Scholar

26. Kamble, P., Sinharoy, P., Pahan, S., Neogy, S., Ananthanarayanan, A., Banerjee, D., Sugilal, G. Synthesis and characterization of chitosan-sodium titanate nanocomposite beads for separation of radionuclides from aqueous radioactive waste. J. Radioanal. Nucl. Chem. 2021, 327, 691; https://doi.org/10.1007/s10967-020-07548-0.Search in Google Scholar

27. Zong, P., Cao, D., Cheng, Y., Wang, S., Zhang, J., Guo, Z., Hayat, T., Alharbi, N. S., He, C. Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions. Cellulose 2019, 26, 4039; https://doi.org/10.1007/s10570-019-02358-4.Search in Google Scholar

28. Bai, J., Fan, F., Wu, X., Tian, W., Zhao, L., Yin, X., Fan, F., Li, Z., Tian, L., Wang, Y., Qin, Z., Guo, J. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. J. Environ. Radioact. 2013, 126, 226; https://doi.org/10.1016/j.jenvrad.2013.08.010.Search in Google Scholar PubMed

29. Omar, S. M., Abdel-Rashid, R. S., AlAssaly, M. K., Sakr, T. M. Adaptation of hard gelatin capsules for oral delivery of aqueous radiopharmaceuticals. Daru, J. Pharm. Sci. 2019, 27, 295; https://doi.org/10.1007/s40199-019-00275-2.Search in Google Scholar PubMed PubMed Central

30. Elsharma, E. M., Abdelmonem, I. M., Emara, A. M. Radiation synthesis and characterization of starch-acrylic acid-nanohalloysite composite for the removal of Co(ii) ions from aqueous solutions. Appl. Radiat. Isot. 2023, 191, 110558; https://doi.org/10.1016/j.apradiso.2022.110558.Search in Google Scholar PubMed

31. Mahmoud, G. A., Abdel-Geleel, M., Badway, N. A., Farha, S. A. A., Alshafei, E. A. Characterization and adsorption properties of starch-based nanocomposite for removal of simulated low-level radioactive waste. Starch/Staerke 2023, 75, 2100287; https://doi.org/10.1002/star.202100287.Search in Google Scholar

32. Hosseini, H., Kokabi, M., Mousavi, S. M. Dynamic mechanical properties of bacterial cellulose nanofibres. Iran. Polym. J. 2018, 27, 433; https://doi.org/10.1007/s13726-018-0621-x.Search in Google Scholar

33. Hosseini, H., Zirakjou, A., McClements, D. J., Goodarzi, V., Chen, W.-H. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J. Hazard. Mater. 2022, 421, 126752; https://doi.org/10.1016/j.jhazmat.2021.126752.Search in Google Scholar PubMed

34. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M. Adsorption of Ni(ii), Cu(ii) and Cd(ii) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 2014, 21, 1471; https://doi.org/10.1007/s10570-014-0240-4.Search in Google Scholar

35. Ariaeenejad, S., Hosseini, E., Motamedi, E., Moosavi-Movahedi, A. A., Salekdeh, G. H. Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chem. Eng. J. 2019, 375, 122022; https://doi.org/10.1016/j.cej.2019.122022.Search in Google Scholar

36. Abass, M. R., Ibrahim, A. B., El-Masry, E. H., Abou-Mesalam, M. M. Optical properties enhancement for polyacrylonitrile-ball clay nanocomposite by heavy metals saturation technique. J. Radioanal. Nucl. Chem. 2021, 329, 849; https://doi.org/10.1007/s10967-021-07844-3.Search in Google Scholar

37. Abass, M. R., Diab, H. M., Abou-Mesalam, M. M. New improved thermoluminescence magnesium silicate material for clinical dosimetry. Silicon 2022, 14, 2555; https://doi.org/10.1007/s12633-021-01049-9.Search in Google Scholar

38. Metwally, S. S., Hassan, H. S., Samy, N. M. Impact of environmental conditions on the sorption behavior of 60Co and 152+154Eu radionuclides onto polyaniline/zirconium aluminate composite. J. Mol. Liq. 2019, 287, 110941; https://doi.org/10.1016/j.molliq.2019.110941.Search in Google Scholar

39. Emara, A. M., El-Sweify, F. H., Abo-Zahra, S. F., Hashim, A. I., Siyam, T. E. Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose. Radiochim. Acta 2019, 107, 695; https://doi.org/10.1515/ract-2018-3005.Search in Google Scholar

40. Hong, T. T., Okabe, H., Hidaka, Y., Omondi, B. A., Hara, K. Radiation induced modified CMC-based hydrogel with enhanced reusability for heavy metal ions adsorption. Polymer 2019, 181, 121772; https://doi.org/10.1016/j.polymer.2019.121772.Search in Google Scholar

41. Avcı Özbek, H., Erden Kopar, E., Demirhan, F. Synthesis, structure, and antimicrobial properties of mixed-metal organometallic polyoxometalates [Cp*2M5VO17]− (M = Mo, W). J. Coord. Chem. 2021, 74, 1794; https://doi.org/10.1080/00958972.2021.1938014.Search in Google Scholar

42. Wategaonkar, S. B., Pawar, R. P., Parale, V. G., Nade, D. P., Sargar, B. M., Mane, R. K. Synthesis of rutile TiO2 nanostructures by single step hydrothermal route and its characterization. Mater. Today: Proc. 2020, 23, 444; https://doi.org/10.1016/j.matpr.2020.02.065.Search in Google Scholar

43. Ansari, M. A., Jahan, N. Structural and optical properties of BaO nanoparticles synthesized by facile co-precipitation method. Mater. Highlights 2021, 2, 23; https://doi.org/10.2991/mathi.k.210226.001.Search in Google Scholar

44. Abdel-Galil, E. A., Eid, M. A., Hassan, R. S. Preparation of nanosized stannic silicomolybdate for chromatographic separation of Y(iii) from Zr(iv). Part. Sci. Technol. 2020, 38, 113; https://doi.org/10.1080/02726351.2018.1520764.Search in Google Scholar

45. Abdel-Galil, E. A., Ibrahim, A. B., El-Kenany, W. M. Facile fabrication of a novel silico vanadate ion exchanger: evaluation of its sorption behavior towards europium and terbium ions. Desalin. Water Treat. 2021, 226, 303; https://doi.org/10.5004/dwt.2021.27261.Search in Google Scholar

46. Ibrahim, A. B., Abass, M. R., EL-Masry, E. H., Abou-Mesalam, M. M. Gamma radiation-induced polymerization of polyacrylic acid-dolomite composite and applications for removal of cesium, cobalt, and zirconium from aqueous solutions. Appl. Radiat. Isot. 2021, 178, 109956; https://doi.org/10.1016/j.apradiso.2021.109956.Search in Google Scholar PubMed

47. Mahrous, S. S., Abass, M. R., Mansy, M. S. Bentonite phosphate modified with nickel: preparation, characterization, and application in the removal of 137Cs and 152+154Eu. Appl. Radiat. Isot. 2022, 190, 110445; https://doi.org/10.1016/j.apradiso.2022.110445.Search in Google Scholar PubMed

48. Hamed, M. M., Holiel, M., Ismail, Z. H. Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim. Acta 2016, 104, 399; https://doi.org/10.1515/ract-2015-2514.Search in Google Scholar

49. Abass, M. R., El-Kenany, W. M., Eid, M. A. Sorption of cesium and gadolinium ions onto zirconium silico antimonate sorbent from aqueous solutions. Appl. Radiat. Isot. 2023, 192, 110542; https://doi.org/10.1016/j.apradiso.2022.110542.Search in Google Scholar PubMed

50. Hamed, M. M. Sorbent extraction behavior of a nonionic surfactant, Triton X-100, onto commercial charcoal from low-level radioactive waste. J. Radioanal. Nucl. Chem. 2014, 302, 303; https://doi.org/10.1007/s10967-014-3250-7.Search in Google Scholar

51. Abdel-Galil, E. A., Ibrahim, A. B., Abou-Mesalam, M. M. Sorption behavior of some lanthanides on polyacrylamide stannic molybdophosphate as organic–inorganic composite. Int. J. Ind. Chem. 2016, 7, 231; https://doi.org/10.1007/s40090-016-0080-1.Search in Google Scholar

52. Lin, X., Jin, J., Guo, X., Jia, X. All-carboxymethyl cellulose sponges for removal of heavy metal ions. Cellulose 2021, 28, 3113; https://doi.org/10.1007/s10570-021-03685-1.Search in Google Scholar

53. Grządka, E., Matusiak, J., Bastrzyk, A., Polowczyk, I. CMC as a stabiliser of metal oxide suspensions. Cellulose 2020, 27, 2225; https://doi.org/10.1007/s10570-019-02930-y.Search in Google Scholar

54. Abass, M. R., Ibrahim, A. B., Abou-Mesalam, M. M. Comparative studies for natural and synthetic composites based on molybdate for gadolinium ions separation. Int. J. Environ. Anal. Chem. 2022, 1, 1–20; https://doi.org/10.1080/03067319.2022.2153045.Search in Google Scholar

Received: 2023-08-10
Accepted: 2023-10-31
Published Online: 2023-11-24
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0214/html
Scroll to top button