Home Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application
Article
Licensed
Unlicensed Requires Authentication

Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application

  • Mohamed R. Abass ORCID logo EMAIL logo , Sara S. Mahrous and Muhammad S. Mansy
Published/Copyright: November 3, 2023

Abstract

Using batch and column procedures, the present work investigated the sorption behaviour of 137Cs and 152+154Eu by bentonite phosphate modified with nickel (BPN) sorbent. The kinetic data obey pseudo-1st-order for 137Cs and follow pseudo-2nd-order for 152+154Eu. Various sorption isotherm models were used to analyze equilibrium data. The thermodynamic functions reflect an endothermic and spontaneous sorption process. HCl (about 95.35 %) and CaCl2 (about 98.13 %) showed the optimum eluents for the complete recovery of both 137Cs and 152+154Eu, respectively. Finally, column data show that 137Cs and 152+154Eu may be loaded on BNP sorbent and separated from an aqueous solution using a variety of HCl concentrations as eluent. The obtianed results revealed that BNP sorbent is suitable for recovering 137Cs and 152+154Eu from low-level radioactive waste effluents (LLW).


Corresponding author: Mohamed R. Abass, Nuclear Fuel Technology Department, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Competing interests: The authors declare no conflicts of interest regarding this article.

  3. Research funding: This work was funded by Egyptian Atomic Energy Authority.

References

1. Abass, M. R., Breky, M. M. E., Maree, R. M. Removal of 137Cs and 90Sr from simulated low-level radioactive waste using tin(IV) vanadate sorbent and its potential hazardous parameters. Appl. Radiat. Isot. 2022, 189, 110417; https://doi.org/10.1016/j.apradiso.2022.110417.Search in Google Scholar PubMed

2. Mansy, M. S., Hassan, R. S., Selim, Y. T., Kenawy, S. H. Evaluation of synthetic aluminum silicate modified by magnesia for the removal of 137Cs, 60Co and 152+154Eu from low-level radioactive waste. Appl. Radiat. Isot. 2017, 130, 198; https://doi.org/10.1016/j.apradiso.2017.09.042.Search in Google Scholar PubMed

3. El-Sadek, A. A., El-Naggar, M. R., Mansy, M. S. Purification of rad-waste arising from irradiated natural tin target towards tellurium-125m/antimony-125 radioisotope generator elaboration. Appl. Radiat. Isot. 2021, 172, 109690; https://doi.org/10.1016/j.apradiso.2021.109690.Search in Google Scholar PubMed

4. Mahrous, S. S., Abass, M. R., Mansy, M. S. Bentonite phosphate modified with nickel: preparation, characterization, and application in the removal of 137Cs and 152+154Eu. Appl. Radiat. Isot. 2022, 190, 110445; https://doi.org/10.1016/j.apradiso.2022.110445.Search in Google Scholar PubMed

5. Mahrous, S. S., Borai, E. H., Mansy, M. S. Polymeric gel for surface decontamination of long-lived gamma and beta-emitting radionuclides. Appl. Radiat. Isot. 2023, 197, 110834; https://doi.org/10.1016/j.apradiso.2023.110834.Search in Google Scholar PubMed

6. Hamed, M. M., Holiel, M., Ismail, Z. H. Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim. Acta 2016, 104, 399; https://doi.org/10.1515/ract-2015-2514.Search in Google Scholar

7. Mansy, M. S., Eid, M. A., Breky, M. M. E., Abass, M. R. Sorption behavior of 137Cs, 152+154Eu and 131Ba from aqueous solutions using inorganic sorbent loaded on talc. J. Radioanal. Nucl. Chem. 2023, 332, 2971; https://doi.org/10.1007/s10967-023-08977-3.Search in Google Scholar

8. Moloukhia, H., Hegazy, W. S., Abdel-Galil, E. A., Mahrous, S. S. Removal of Eu3+, Ce3+, Sr2+, and Cs+ ions from radioactive waste solutions by modified activated carbon prepared from coconut shells. Chem. Ecol. 2016, 32, 324; https://doi.org/10.21608/jsrs.2015.18494.Search in Google Scholar

9. Hamoud, M. A., Allan, K. F., Sanad, W. A., El-Hamouly, S. H., Ayoub, R. R. Gamma irradiation-induced preparation of poly (acrylamide-itaconic acid)/zirconium hydrous oxide for removal of Cs-134 radionuclide and methylene blue. J. Radioanal. Nucl. Chem. 2014, 302, 169; https://doi.org/10.1007/s10967-014-3206-y.Search in Google Scholar

10. Abdel-Galil, E. A., Moloukhia, H., Abdel-Khalik, M., Mahrous, S. S. Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions. Appl. Radiat. Isot. 2018, 140, 363; https://doi.org/10.1016/j.apradiso.2018.07.022.Search in Google Scholar PubMed

11. Mahrous, S. S., Galil, E. A. A., Mansy, M. S. Investigation of modified orange peel in the removal of Cd2+, Co2+ and Zn2+ from wastewater. J. Radioanal. Nucl. Chem. 2022, 331, 985; https://doi.org/10.1007/s10967-021-08166-0.Search in Google Scholar

12. Mahrous, S., Abdel-Galil, E., Belacy, N., Saad, E. Adsorption behavior and practical separation of some radionuclides using cellulose/HO7Sb3. Desalination Water Treat. 2019, 152, 124; https://doi.org/10.5004/dwt.2019.23981.Search in Google Scholar

13. Ahn, J. M., Kim, S., Kim, Y.-S. Selection of priority management of rivers by assessing heavy metal pollution and ecological risk of surface sediments. Environ. Geochem. Health 2020, 42, 1657; https://doi.org/10.1007/s10653-019-00284-9.Search in Google Scholar PubMed

14. Borai, E., Attallah, M., Harjula, R., Koivula, R., Paajanen, A. Separation of europium from cobalt using antimony silicates in sulfate acidic media. Miner. Process. Extr. Metall. Rev. 2012, 33, 204; https://doi.org/10.1080/08827508.2011.562951.Search in Google Scholar

15. Attallah, M. F., Borai, E. H., Allan, K. F. Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 2009, 51, 622; https://doi.org/10.1134/s1066362209060113.Search in Google Scholar

16. Attallah, M. F., Rizk, S. E., El Afifi, E. M. Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. J. Radioanal. Nucl. Chem. 2018, 317, 933; https://doi.org/10.1007/s10967-018-5938-6.Search in Google Scholar

17. Attallah, M. F., Elgazzar, A. H., Borai, E. H., El-Tabl, A. S. Preparation and characterization of aluminum silicotitanate: ion exchange behavior for some lanthanides and iron. J. Chem. Technol. Biotechnol. 2016, 91, 2243; https://doi.org/10.1002/jctb.4810.Search in Google Scholar

18. Borai, E. H., Hilal, M. A., Attallah, M. F., Shehata, F. A. Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim. Acta 2008, 96, 441; https://doi.org/10.1524/ract.2008.1506.Search in Google Scholar

19. Hurtado-Bermúdez, S., Villa-Alfageme, M., Mas, J. L., Alba, M. D. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials. Appl. Radiat. Isot. 2018, 137, 177; https://doi.org/10.1016/j.apradiso.2018.04.008.Search in Google Scholar PubMed

20. Abass, M. R., Ibrahim, A. B., Abou-Mesalam, M. M. Retention and selectivity behavior of some lanthanides using bentonite dolomite as a natural material. Chem. Pap. 2021, 75, 3751; https://doi.org/10.1007/s11696-021-01621-y.Search in Google Scholar

21. Abass, M. R., El-Masry, E. H., Ibrahim, A. B. Preparation, characterization, and applications of polyacrylonitrile/ball clay nanocomposite synthesized by gamma radiation. Environ. Geochem. Health 2021, 43, 3169; https://doi.org/10.1007/s10653-021-00813-5.Search in Google Scholar PubMed

22. Abou-Mesalam, M. M., Abass, M. R., Ibrahim, A. B., Zakaria, E. S. Polymeric composite materials based on silicate. III-Capacity and sorption behavior of some hazardous metals on irradiated doped polyacrylamide acrylonitrile. Desalination Water Treat. 2020, 193, 402; https://doi.org/10.5004/dwt.2020.25816.Search in Google Scholar

23. Stanković, N., Logar, M., Luković, J., Pantić, J., Miljević, M., Babić, B., Radosavljević-Mihajlović, A. Characterization of bentonite clay from’Greda’deposit. Process. Appl. Ceram. 2011, 5, 97; https://doi.org/10.2298/pac1102097s.Search in Google Scholar

24. El Afifi, E. M., Mansy, M. S., Hilal, M. A. Radiochemical signature of radium-isotopes and some radiological hazard parameters in TENORM waste associated with petroleum production: a review study. J. Environ. Radioact. 2023, 256, 107042; https://doi.org/10.1016/j.jenvrad.2022.107042.Search in Google Scholar PubMed

25. Hilal, M. A., Attallah, M. F., Mansy, M. S., El Afifi, E. M. Examination of the parameters affecting of 222Rn emanation for some industrial and environmental samples using gamma-spectroscopy. Appl. Radiat. Isot. 2022, 186, 110272; https://doi.org/10.1016/j.apradiso.2022.110272.Search in Google Scholar PubMed

26. Abass, M. R., Ibrahim, A. B., Abou-Mesalam, M. M. Retention and selectivity behavior of some lantshanides using bentonite dolomite as a natural material. Chem. Pap. 2021, 75, 3751; https://doi.org/10.1007/s11696-021-01621-y.Search in Google Scholar

27. Abass, M. R., Ibrahim, A. B., Abou-Mesalam, M. M. Sorption and selectivity behavior of some rare earth elements on bentonite–dolomite composites as natural materials. Radiochemistry 2022, 64, 349; https://doi.org/10.1134/s1066362222030122.Search in Google Scholar

28. Dakroury, G. A., El-Shazly, E. A. A., Hassan, H. S. Preparation and characterization of ZnO/Chitosan nanocomposite for Cs(I) and Sr(II) sorption from aqueous solutions. J. Radioanal. Nucl. Chem. 2021, 330, 159; https://doi.org/10.1007/s10967-021-07935-1.Search in Google Scholar

29. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361; https://doi.org/10.1021/ja02242a004.Search in Google Scholar

30. Freundlich, H. Über die adsorption in lösungen. Z. Phys. Chem. 1907, 57, 385; https://doi.org/10.1515/zpch-1907-5723.Search in Google Scholar

31. Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar 1898, 24, 1.Search in Google Scholar

32. Ho, Y. S., McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735; https://doi.org/10.1016/s0043-1354(99)00232-8.Search in Google Scholar

33. Manjuladevi, M., Anitha, R., Manonmani, S. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Appl. Water Sci. 2018, 8, 1; https://doi.org/10.1007/s13201-018-0674-1.Search in Google Scholar

34. Abdel-Galil, E. A., Ibrahim, A. B., Abou-Mesalam, M. M. Sorption behavior of some lanthanides on polyacrylamide stannic molybdophosphate as organic-inorganic composite. Int. J. Ind. Chem. 2016, 7, 231; https://doi.org/10.1007/s40090-016-0080-1.Search in Google Scholar

35. Şenol, Z. M., Şimşek, S. Insights into effective adsorption of lead ions from aqueous solutions by using chitosan-bentonite composite beads. J. Polym. Environ. 2022, 30, 3677; https://doi.org/10.1007/s10924-022-02464-8.Search in Google Scholar

36. Şenol, Z. M., Kaya, S., Şimşek, S., Katin, K. P., Özer, A., Marzouki, R. Synthesis and characterization of chitosan-vermiculite-lignin ternary composite as an adsorbent for effective removal of uranyl ions from aqueous solution: experimental and theoretical analyses. Int. J. Biol. Macromol. 2022, 209, 1234; https://doi.org/10.1016/j.ijbiomac.2022.04.128.Search in Google Scholar PubMed

37. El-Kenany, W. M., Abass, M. R., Abdel-Galil, E. A. Recovery of Fe(III) and La(III) from liquid solutions by modified Melia Azedarach zinc oxide as eco-friendly sorbent. Int. J. Environ. Anal. Chem. 2022, 1, 1–15.10.1080/03067319.2022.2054707Search in Google Scholar

38. Abass, M. R., El-Kenany, W. M., El-Masry, E. H. High efficient removal of lead(II) and cadmium(II) ions from multi-component aqueous solutions using polyacrylic acid acrylonitrile talc nanocomposite. Environ. Sci. Pollut. Res. 2022, 29, 72929; https://doi.org/10.1007/s11356-022-21023-1.Search in Google Scholar PubMed PubMed Central

Received: 2023-05-06
Accepted: 2023-09-25
Published Online: 2023-11-03
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0168/html
Scroll to top button