Abstract
This work focused the determination of the rare earth elements (REE) in Algerian bentonites named Mos and Mag using k0-NAA method. Eleven rare earth elements such as Ce, Nd, La, Sc, Sm, Yb, Tm, Ho, Tb, Eu and Lu were determined. Results revealed that the total light REE (LREE) in Mos (168 ppm) is higher than in Mag (68.5 ppm). In addition, the ratio of total LREE (LREE) to the total heavy rare earth elements (HREE) found to be 6.40 in Mag and 27.6 in Mos which indicates that Mos is highly rich with REE than Mag. Ce and Eu correspond to the highest and lower trace of REE in both bentonites, respectively. The concentration of Sc, Tb and Ho are comparable in two materials. All results are compared with other data of literature in terms of La, Sc, Ce, Nd, Sm and Yb. Amounts and the proportion of LREE comparing to THREE are discussed in this study.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Zhang, N., Han, Y., Li, L., Wu, R., Song, L., Zhang, G., Liang, W., He, H. Use of rare earth elements in single-atom site catalysis: a critical review – commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare Earths. 2021, 39, 233–242; https://doi.org/10.1016/j.jre.2020.11.013.Search in Google Scholar
2. Wang, G., Zhao, Z., Zhang, S., Zheng, L. Effects of Al, Zn, and rare earth elements on flammability of magnesium alloys subjected to sonic burner–generated flame by Federal Aviation Administration standards. Proc. Inst. Mech. Eng., Part G. 2021, 235, 1991–2002; https://doi.org/10.1177/0954410020987758.Search in Google Scholar
3. Zhao, H. Y., Xia, J. L., Yin, D. D., Luo, M., Yan, C. H., Du, Y. P. Rare earth incorporated electrode materials for advanced energy storage. Coord. Chem. Rev. 2019, 390, 32–49; https://doi.org/10.1016/j.ccr.2019.03.011.Search in Google Scholar
4. Vaughan, J., Tungpalan, K., Parbhakar-Fox, A., Weng Fu, W., Gagen, E. J., Nkrumah, P. N., Southam, G., van der Ent, A., Erskine, P. D., Gow, P., Valenta, R. Toward closing a loophole: recovering rare earth elements from uranium metallurgical process tailings. JOM 2021, 73, 39–53. https://doi.org/10.1007/s11837-020-04451-7.Search in Google Scholar
5. Waisman, H., De Coninck, H., Rogelj, J. Key technological enablers for ambitious climate goals: insights from the IPCC special report on global warming of 1.5 °C. Environ. Res. Lett. 2019, 14, 111001; https://doi.org/10.1088/1748-9326/ab4c0b.Search in Google Scholar
6. Adeel, M., Lee, J. Y., Zain, M., Nawab, A., Ahmad, M., Shafiq, M., Yi, H., Jilani, G., Javed, R., Horton, R., Rui, Y., Tsang, D. C., Xing, B. Cryptic footprints of rare earth elements on natural resources and living organisms. Environ. Int. 2019, 127, 785–800; https://doi.org/10.1016/j.envint.2019.03.022.Search in Google Scholar PubMed
7. Jowitt, S. M. Mineral economics of the rare-earth elements. MRS Bull. 2022, 47, 276–282. https://doi.org/10.1557/s43577-022-00289-3.Search in Google Scholar
8. Bashiri, A., Nikzad, A., Maleki, R., Asadnia, M., Razmjou, A. Rare earth elements recovery using selective membranes via extraction and rejection. Membranes 2022, 12, 80; https://doi.org/10.3390/membranes12010080.Search in Google Scholar PubMed PubMed Central
9. Liu, C., Yuan, M., Liu, S. H., Guo, M. N., Zheng, H. X., Huot, H., Jally, B., Tang, Y. T., Laubie, B., Simonnot, M. O., Morel, J. L., Qiu, R. L. Element case studies: rare earth elements. In Agromining: Farming for Metals. Mineral Resource Reviews; van der Ent, A., Baker, A. J., Echevarria, G., Simonnot, M. O., Morel, J. L., Eds. Springer: Cham, 2021.10.1007/978-3-030-58904-2_24Search in Google Scholar
10. Drobniak, A., Mastalerz, M. Rare earth elements: a brief overview. Ind. J. Earth Sci. 2022, 4, 2; https://doi.org/10.14434/ijes.v4i1.33628.Search in Google Scholar
11. United States Geological Survey (USGS). Mineral Commodity Summaries 2018; Gov: Print. Off: Washington, DC, 2018. https://www.usgs.gov/centers/nmic/rare-earths-statistics.and-information.Search in Google Scholar
12. She, H. D., Fan, H. R., Yang, K. F., Li, X. C., Yang, Z. F., Wang, Q. W., Zhang, L. F., Wang, Z. J.. Complex, multi-stage mineralization processes in the giant Bayan Obo REE–Nb–Fe deposit, China. Ore Geol. Rev. 2021, 139, 104461; https://doi.org/10.1016/j.oregeorev.2021.104461.Search in Google Scholar
13. Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., Dissanayake, K. The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521; https://doi.org/10.1016/j.oregeorev.2020.103521.Search in Google Scholar
14. Xie, Y., Hou, Z., Goldfarb, R. J., Guo, X., Wang, L. Rare earth element deposits in China. Rev. Econ. Geol. 2016, 18, 115–136. https://doi.org/10.5382/REV.18.Search in Google Scholar
15. Buccione, R., Kechiched, R., Mongelli, G., Simisi, R. REEs in the North Africa P-bearing deposits, paleo environments, and economic perspectives: a review. Minerals 2021, 11, 214; https://doi.org/10.3390/min11020214.Search in Google Scholar
16. Kechiched, R., Laouar, R., Bruguier, O., Laouar-Salmi, S., Ameur-Zaimeche, O., Foufou, A. Preliminary data of REE in Algerian phosphorites: a comparative study and paleo-redox insights. Procedia Eng. 2016, 138, 19–29; https://doi.org/10.1016/j.proeng.2016.02.048.Search in Google Scholar
17. Hamidatou, L. A., Ed. Advanced Technologies and Applications of Neutron Activation Analysis; IntechOpen: London, 2019.Search in Google Scholar
18. Alghem, L., Ramdhane, M., Khaled, S., Akhal, T. The development and application of k0-standardization method of neutron activation analysis at Es-Salam research reactor. J. Nucl. Instrum. Methods Phys. Res. A. 2006, 556, 386–390; https://doi.org/10.1016/j.nima.2005.10.017.Search in Google Scholar
19. Hamidatou, L., Ramdhane, M. Characterization of neutron spectrum at Es-Salam research reactor using Hogdahl convention and Westcott formalism for the k0-based neutron activation analysis. J. Radioanal. Nucl. Chem. 2008, 278, 627–630; https://doi.org/10.1007/s10967-008-1205-6.Search in Google Scholar
20. Hamidatou, L., Benkharfia, H. Experimental and MCNP calculations of neutron flux parameters in irradiation channel at Es-Salam reactor. J. Radioanal. Nucl. Chem. 2011, 287, 971–975; https://doi.org/10.1007/s10967-010-0922-9.Search in Google Scholar
21. Hamidatou, L. A., Dakar, S., Boukari, S. k0-NAA quality assessment in an Algerian laboratory by analysis of SMELS and four IAEA reference materials using Es-Salam Research reactor. J. Nucl. Instrum. Methods Phys. Res. A. 2012, 682, 75–78; https://doi.org/10.1016/j.nima.2012.04.042.Search in Google Scholar
22. Hamidatou, L., Slamene, H., Akhal, T., Zouranen, B. Book chapter: Concepts. Instrumentation and techniques of neutron activation analysis. In Imaging and Radioanalytical Techniques in Interdisciplinary Research – Fundamentals and Cutting Edge Applications; Kharfi, F., Ed.; InTech: London, UK, 2013.Search in Google Scholar
23. Hamidatou Alghem, L.. Mise au point de la methode k0-NAA en utilisant la convention de HΦGDAHL et le formalisme de WESTCOTT et son application dans la nutrition, la sante et la minéralogie. Doctorate Thesis, Ferhat Abbes University, Sétif, 2010.Search in Google Scholar
24. Hamidatou, L. A., Khaled, S., Akhal, T., Ramdhane, M. Determination of trace elements in cigarette tobacco with the k0-based NAA method using Es-Salam research reactor. J. Radioanal. Nucl. Chem. 2009, 281, 535–540; https://doi.org/10.1007/s10967-009-0011-0.Search in Google Scholar
25. Hamidatou, L., Slamene, H., Si Mohamed, L. Major, minor and trace elements in four kinds of cement powder using INAA and k 0-standardization methods. J. Radioanal. Nucl. Chem. 2015, 304, 717–725. https://doi.org/10.1007/s10967-014-3839-x.Search in Google Scholar
26. Hamidatou, L., Arbaoui, F., Boucherit, M. N., Slamene, H. Determination of chemical elements in two Algerian bentonites by k0-NAA and WDXRF techniques. J. Radioanal. Nucl. Chem. 2023, 332, 573–580. https://doi.org/10.1007/s10967-023-08787-7.Search in Google Scholar
27. Bachouche, S., Boutaleb, A. Geology. Mineralogy and chemistry of the M’zila bentonitic clay deposit (Mostaganem. NW Algeria). Arabian J. Geosci. 2013, 6, 2165–2172; https://doi.org/10.1007/s12517-011-0455-8.Search in Google Scholar
28. Babahoum, N., Ould Hamou, M. Characterization and purification of Algerian natural bentonite for pharmaceutical and cosmetic applications. BMC Chem. 2021, 15, 1–11; https://doi.org/10.1186/s13065-021-00776-9.Search in Google Scholar PubMed PubMed Central
29. Arbaoui, F., Amzert, S. A., Boucherit, M. N. Corrosion of a carbon steel covered by treated bentonites in aqueous solution. J. Fundam. Appl. Sci. 2017, 9, 1300–1319; https://doi.org/10.4314/jfas.v9i3.4.Search in Google Scholar
30. Arbaoui, F., Boucherit, M. N. Comparison of two Algerian bentonites: physico–chemical and retention capacity study. Appl. Clay Sci. 2014, 91, 6–11; https://doi.org/10.1016/j.clay.2014.02.001.Search in Google Scholar
31. k0-database, version 2020/8/24. http://www.kayzero.com.Search in Google Scholar
32. Hamidatou, L., Slamene, H., Akhal, T., Zouranen, B. Concepts, instrumentation and techniques of neutron activation analysis. In Imaging and Radioanalytical Techniques in Interdisciplinary Research—Fundamentals and Cutting Edge Applications, Vol. 141. InTech: Rijeka, 2013; p. 178.10.5772/53686Search in Google Scholar
33. GenieTM 2000 Spectroscopy Software. Version 3.2.1. Canberra, 2009.Search in Google Scholar
34. HyperLab 2005 System: Installation and Quick Start Guides. HyperLabs Software. Budapest, 2005.Search in Google Scholar
35. Kayzero for Windows (KayWins). Software package for reactor neutron activation analysis (NAA) using the k0-standardization method. In V2. Software Developed by DSM Research. Geleen (NL) for NAA Based on the k0-Standardization Method Developed at the INW-RUG. Gent (B) and the AEKI: Budapest (H), 2005.Search in Google Scholar
36. Dubinin, A. V. Geochemistry of rare earth elements in the ocean. Lithol. Miner. Resour. 2004, 39, 289–307; https://doi.org/10.1023/b:limi.0000033816.14825.a2.10.1023/B:LIMI.0000033816.14825.a2Search in Google Scholar
37. Shahida, W., Siddique, N., Faiz, Y. Rare earth and high field strength elements in the Multani mitti clay: a study using INAA. Geostand. Geoanal. Res. 2013, 37, 197–205; https://doi.org/10.1111/j.1751-908x.2012.00186.x.Search in Google Scholar
38. Kuleff, I., Pernicka, E. INAA of geological standard reference materials. J. Radioanal. Nucl. Chem. 2002, 251, 139–143; https://doi.org/10.1023/a:1015066932583.10.1023/A:1015066932583Search in Google Scholar
39. Kogel, J. E., Lewis, S. Baseline studies of the clay minerals society source clays: chemical analysis by inductively coupled plasma-mass spectroscopy (ICP-MS). Clays Clay Miner. 2001, 49, 387–392; https://doi.org/10.1346/ccmn.2001.0490505.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Efficient removal of U(VI) from aqueous solution by hydroxyapatite/graphene oxide composite microspheres
- Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application
- Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions
- Production of Auger-electron-emitting 103mRh via a 103Pd/103mRh generator using an anion-exchange resin
- Determination of rare earth elements in Algerian bentonites using k0-NAA method
- Determination of natural and artificial radioactivity levels and radiation hazard indices for soil samples in Kırşehir
- Gamma-radiation levels along the main Karakorum thrust area of Northern Pakistan
Articles in the same Issue
- Frontmatter
- Original Papers
- Efficient removal of U(VI) from aqueous solution by hydroxyapatite/graphene oxide composite microspheres
- Sorption behaviour of 137Cs and 152+154Eu onto bentonite phosphate modified with nickel: kinetics, isotherms, and chromatographic column application
- Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions
- Production of Auger-electron-emitting 103mRh via a 103Pd/103mRh generator using an anion-exchange resin
- Determination of rare earth elements in Algerian bentonites using k0-NAA method
- Determination of natural and artificial radioactivity levels and radiation hazard indices for soil samples in Kırşehir
- Gamma-radiation levels along the main Karakorum thrust area of Northern Pakistan