Home Separation of 71,72As from alpha-particle induced reaction on gallium oxide target using naturally occurring alkaloid caffeine
Article
Licensed
Unlicensed Requires Authentication

Separation of 71,72As from alpha-particle induced reaction on gallium oxide target using naturally occurring alkaloid caffeine

  • Sayantani Mitra , Nabanita Naskar , Puja Samanta , Pujarini Banerjee , Susanta Lahiri EMAIL logo , Kalpita Ghosh and Punarbasu Chaudhuri
Published/Copyright: June 23, 2023

Abstract

Gallium oxide target was irradiated with 46 MeV alpha-particle beam, which produced 71,72As and 67Ga radioisotopes in the matrix. Separation of radio-arsenics from the bulk gallium target was carried out by caffeine, a nature-resourced reagent, extracted from black tea leaves. 71,72As radionuclides were preferentially attached with caffeine and precipitated with caffeine in 2 M Na2SO4 solution as caffeine was insoluble in aqueous medium under this condition. With increase in weight of caffeine, extraction of 71,72As and bulk gallium significantly increased. Bulk Ga along with 67Ga remained in the supernatant. Geometry optimization of caffeine–metal complex was carried out by theoretical computational analysis. DFT calculation corroborated with the experimental findings where As3+ preferentially binds with caffeine in presence of gallium and arsenic. As evidenced by the short As–O and As–N distances, the high binding energies are a result of the metal ion’s strong binding to the carbonyl and nitrogen centres, whereas no such result could be obtained in case of bulk gallium.


Corresponding author: Susanta Lahiri, Diamond Harbour Women’s University, Sarisha, South 24, Parganas 743368, India; and Sidho-Kanho-Birsha University, Ranchi Road, Purulia 723104, India, E-mail:

Acknowledgments

Authors are thankful to Variable Energy Cyclotron Staffs (VECC), Kolkata for their cooperation during the irradiation experiments. This work was carried out under collaborative research scheme no UGC-DAE-CSR-KC/CRS/19/RC l0/0984 of UGC DAE Consortium for Scientific Research. SM gratefully acknowledges UGC-DAE-CSR KC, Govt of India for providing the necessary fellowship.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

1. Lahiri, S., Choudhury, D., Sen, K. Radio-green chemistry and nature resourced radiochemistry. J. Radioanal. Nucl. Chem. 2018, 318, 1543–1558. https://doi.org/10.1007/s10967-018-6240-3.Search in Google Scholar

2. Ghosh, K., Naskar, N., Choudhury, D., Lahiri, S. Natural flavonoids as Superior Reagents for Separation of Clinically Important Zr Radionuclides; ChemRxiv [Preprint]: Kolkata, 2019.10.26434/chemrxiv.10043237Search in Google Scholar

3. Lahiri, S., Choudhury, D., Naskar, N., Ghosh, K. Studies on 208Po-hesperidin association. In Proceedings of Application of Radiotracers and Energetic Beams in Sciences; Lahiri S., Ed.; Ffort Raichak: Kolkata, India, 2018; pp. 272–272.Search in Google Scholar

4. Naskar, N., Choudhury, D., Basu, S., Banerjee, K. Separation of NCA 88Zr from proton irradiated natY target: a novel approach using low-cost bio-sorbent potato peel charcoal. J. Radioanal. Nucl. Chem. 2019, 322, 231–235. https://doi.org/10.1007/s10967-019-06637-z.Search in Google Scholar

5. Naskar, N., Banerjee, K. Development of sustainable extraction method for long-lived radioisotopes, 133Ba and 134Cs using a potential bio-sorbent. J. Radioanal. Nucl. Chem. 2020, 325, 587–593. https://doi.org/10.1007/s10967-020-07241-2.Search in Google Scholar

6. Roy, K., Das, L., Lahiri, S. Studies on mercury binding affinity of conarachin extracted from groundnut (Arachis hypogeae). In Proceedings of Nuclear and Radiochemistry Symposium; NUCAR. KC College: Mumbai, India, 2009a; pp. 575–576.Search in Google Scholar

7. Roy, K., Ghosh, K., Banerjee, A., Mukhopadhyay, D., Lahiri, S. Biomolecule–metal interactions: applications in extraction and separation techniques. Biochem. Eng. J. 2009b, 45, 82. https://doi.org/10.1016/j.bej.2009.02.012.Search in Google Scholar

8. Ghosh, K., Lahiri, S. Radiometric study on bioaccumulation of gold by an alkaloid extracted from fruits of Piper nigrum. J. Radioanal. Nucl. Chem. 2007, 274, 233–236. https://doi.org/10.1007/s10967-007-1104-2.Search in Google Scholar

9. Nayak, D., Hazra, K., Laskar, S., Lahiri, S. Preconcentration of gold by Mimusops elengi seed proteins. J. Radioanal. Nucl. Chem. 2008, 275, 423–426. https://doi.org/10.1007/s10967-007-7006-5.Search in Google Scholar

10. Banerjee, A., Lahiri, S. Albumin metal interaction: a multielemental radiotracer study. J. Radioanal. Nucl. Chem. 2009, 279, 733–741. https://doi.org/10.1007/s10967-008-7372-7.Search in Google Scholar

11. Kuhnert, N. Unraveling the structure of the black tea thearubigins. Arch. Biochem. Biophys. 2010, 501, 37–51. https://doi.org/10.1016/j.abb.2010.04.013.Search in Google Scholar PubMed

12. Nafisi, S., Sadjadi, A. S., Zadeh, S. S., Damerchelli, M. Interaction of metal ions with caffeine and theophylline: stability and structural features. J. Biomol. Struct. Dyn. 2003, 21, 289–295. https://doi.org/10.1080/07391102.2003.10506924.Search in Google Scholar PubMed

13. Shi, X., Dalal, N. S., Jain, A. C. Antioxidant behaviour of caffeine: efficient scavenging of hydroxyl radicals. Food Chem. Toxicol. 1991, 29, 1–6. https://doi.org/10.1016/0278-6915(91)90056-d.Search in Google Scholar PubMed

14. Mitra, S., Naskar, N., Ghosh, K., Dutta, A., Lahiri, S., Chaudhuri, P., Saha, A. Studies on radiation stability of natural caffeine. Appl. Radiat. Isot. 2022, 183, 110148. https://doi.org/10.1016/j.apradiso.2022.110148.Search in Google Scholar PubMed

15. Qaim, S. M. Nuclear data relevant to the production and application of diagnostic radionuclide. Radiochim. Acta 2001, 89, 223–334. https://doi.org/10.1524/ract.2001.89.4-5.223.Search in Google Scholar

16. Sanders, V. A., CutlerRadioarsenic, C. S. A promising theragnostic candidate for nuclear medicine. Nucl. Med. Biol. 2021, 92, 184–201. https://doi.org/10.1016/j.nucmedbio.2020.03.004.Search in Google Scholar PubMed

17. Jennewein, M., Hermanne, A., Mason, R. P., Thorpe, P. E., Rösch, F. A new method for the labelling of proteins with radioactive arsenic isotopes. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2006, 569, 512–517. https://doi.org/10.1016/j.nima.2006.08.088.Search in Google Scholar

18. Jahn, M., Radchenko, V., Filosofov, D. V., Hauser, H., Ei-senhut, M., Rösch, F., Jennewein, M. Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochim. Acta 2010, 98, 807–812. https://doi.org/10.1524/ract.2010.1783.Search in Google Scholar

19. Naskar, N., Lahiri, S. Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target. Radiochim. Acta 2021, 109, 389–395. https://doi.org/10.1515/ract-2020-0120.Search in Google Scholar

20. Jennewein, M., Qaim, S. M., Hermanne, A., Jahn, M., Tsyganov, E., Slavine, N., Seliounine, S., Antich, P. A., Kulkarni, P. V., Thorpe, P. E., Mason, R. P., Rösch, F. A new method for radiochemical separation of arsenic from irradiated germanium oxide. Appl. Radiat. Isot. 2005, 63, 343; https://doi.org/10.1016/j.apradiso.2005.04.005.Search in Google Scholar PubMed

21. Chattopadhyay, S., PalVimalnathDas, S. K. V. M. K. A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Appl. Radiat. Isot. 2007, 65, 1202–1207. https://doi.org/10.1016/j.apradiso.2007.05.010.Search in Google Scholar PubMed

22. Mandal, A., Lahiri, S. Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target. Radiochim. Acta 2012, 100, 865–870. https://doi.org/10.1524/ract.2012.1980.Search in Google Scholar

23. Billinghurst, M. W., Abrams, D. N., Cantor, S. Separation of radioarsenic from a germanium dioxide target. Appl. Radiat. Isot. 1990, 41, 501–507. https://doi.org/10.1016/0883-2889(90)90012-6.Search in Google Scholar

24. Shehata, M., Scholten, B., Spahn, I., Coenen, H., Qaim, S. Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J. Radioanal. Nucl. Chem. 2011, 287, 435–442. https://doi.org/10.1007/s10967-010-0699-x.Search in Google Scholar

25. Maki, Y., Murakami, Y. The separation of arsenic-77 in a carrier-free state from the parent nuclide germanium-77 by a thin-layer chromatographic method. J. Radioanal. Nucl. Chem. 1974, 22, 5–12. https://doi.org/10.1007/bf02518087.Search in Google Scholar

26. Gott, M. D., DeGraffenreid, A. J., Feng, Y., Phipps, M. D., Wycoff, D. E., Embree, M. F., Cutler, C. S., Ketring, A. R., Jurisson, S. S. Chromatographic separation of germanium and arsenic for the production of high purity 77As. J. Chromatogr. A. 2016, 1441, 68. https://doi.org/10.1016/j.chroma.2016.02.074.Search in Google Scholar PubMed PubMed Central

27. Oláh, Z., Kremmer, T., Vogg, A. T., Varga, Z., Szűcs, Z., Neumaier, B., Dóczi, R. Novel ion exchange chromatography method for nca arsenic separation. Appl. Radiat. Isot. 2017, 122, 111–115. https://doi.org/10.1016/j.apradiso.2017.01.008.Search in Google Scholar PubMed

28. Guin, R., Das, S., Saha, S. Separation of carrier-free arsenic from germanium. J. Radioanal. Nucl. Chem. 1998, 227, 181–183. https://doi.org/10.1007/bf02386457.Search in Google Scholar

29. Naskar, N., Lahiri, S. Separation of 71,72As from alpha particle induced gallium oxide target by solid cation and anion ex-changers, DOWEX-50 and DOWEX-1. Appl. Radiat. Isot. 2021, 176, 109876. https://doi.org/10.1016/j.apradiso.2021.109876.Search in Google Scholar PubMed

30. Naskar, N., Lahiri, S., Bombard, A. Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated Ga2O3 target by TK200 and DGA-N resins. J. Radioanal. Nucl. Chem. 2022, 331, 215–220.10.1007/s10967-021-08110-2Search in Google Scholar

31. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fu-kuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 09, (Revision C.02); Gaussian, Inc.: Wallingford CT, 2016.Search in Google Scholar

32. Dunning, T. H.Jr Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. https://doi.org/10.1063/1.456153.Search in Google Scholar

33. Boys, S. F., Bernardi, F. J. M. P. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. https://doi.org/10.1080/00268977000101561.Search in Google Scholar

34. Knowles, F. C., Benson, A. A. The biochemistry of Arsenic. Trends Biochem. Sci. 1983, 8, 178–180. https://doi.org/10.1016/0968-0004(83)90168-8.Search in Google Scholar

35. The Lund/LBNL Nuclear Data Search http://nucleardata.nuclear.lu.se/toi/nucSearch.asp (accessed Sep 22 2022).Search in Google Scholar

36. Al-Maaieh, A., Flanagan, D. R. Salt effects on caffeine solubility, distribution, and self-association. J. Pharm. Sci. 2002, 91, 1000–1008. https://doi.org/10.1002/jps.10046.Search in Google Scholar PubMed

37. Nafisi, S., Shamloo, D. S., Mohajerani, N., Omidi, A. A comparative study of caffeine and theophylline binding to Mg (II) and Ca (II) ions: studied by FTIR and UV spectroscopic methods. J. Mol. Struct. 2002, 608, 1–7. https://doi.org/10.1016/s0022-2860(01)00876-6.Search in Google Scholar

38. Kolaylı, S., Ocak, M., Küçük, M., Abbasoǧlu, R. Does caffeine bind to metal ions? Food Chem. 2004, 84, 383–388.10.1016/S0308-8146(03)00244-9Search in Google Scholar

39. Nafisi, S., Monajemi, M., Ebrahimi, S. The effects of mono-and divalent metal cations on the solution structure of caffeine and theophylline. J. Mol. Struct. 2004, 705, 35–39. https://doi.org/10.1016/j.molstruc.2004.04.022.Search in Google Scholar

40. Kumar, S. S., Devasagayam, T. P. A., Jayashree, B., Kesavan, P. C. Mechanism of protection against radiation-induced DNA damage in plasmid pBR322 by caffeine. Int. J. Radiat. Biol. 2001, 77, 617–623. https://doi.org/10.1080/09553000110034649.Search in Google Scholar PubMed

41. Hebbar, S. A., Mitra, A. K., George, K. C., Verma, N. C. Caffeine ameliorates radiation-induced skin reactions in mice but does not influence tumour radiation response. J. Radiol. Prot. 2002, 22, 63. https://doi.org/10.1088/0952-4746/22/1/306.Search in Google Scholar PubMed

42. Kesavan, P. C., Natarajan, A. T. Protection and potentiation of radiation clastogenesis by caffeine: nature of possible initial events. Mutat. Res. Lett. 1985, 143, 61–68. https://doi.org/10.1016/0165-7992(85)90106-x.Search in Google Scholar PubMed

Received: 2023-03-02
Accepted: 2023-06-05
Published Online: 2023-06-23
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2023-0148/html?lang=en
Scroll to top button