A closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses
-
Khamis S. Shaaban
, Beriham Basha
Abstract
GeO2-doped magnesium-telluroborate transparent glasses were synthesized in the current investigation using the traditional melt-quench procedure. XRD and FT-IR were used to examine the glasses’ structural properties. Following the measurement of the density, various physical parameters (including oxygen molar volume, oxygen packing density, etc.) were estimated and examined. From the FTIR results, one can deduce that clear structural alterations are seen which support the presence and conversion of BO3 and BO4 units. This is a result of the glass network forming more GeO4, TeO4, and BO4 units, which means that decreased NBO is forming, and more stiff networks are forming as a result. The increase in the overall stretching force constant of the glasses may also have an impact on the elastic moduli. The optical parameters were studied as optical energy band gap, Urbach energy and refractive index of the fabricated glass. According to the HVL data, the current glasses have a significant ability to lessen the intensity of gamma rays with lower energy. The glass with a small amount of GeO2 has a high HVL, whereas the glass with a higher amount of GeO2 has a lower HVL, as shown by the HVL data. The G5 glass demonstrated its superiority as a shielding glass over the other glass samples (G1–G4).
Acknowledgements
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R326), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
-
Compliance with Ethical Standards: The authors declare that there are no ethical questions involved in this work.
References
1. Fayad, A. M., Shaaban, K. S., Abd-Allah, W. M., Ouis, M. Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation. J. Inorg. Organomet. Polym. 2020, 30, 5042–5052; https://doi.org/10.1007/s10904-020-01641-3.Search in Google Scholar
2. Mahmoud, K. H., Alsubaie, A. S., Abdel Wahab, E. A., Abdel-Rahim, F. M., Shaaban, K. S. Research on the effects of yttrium on bismuth titanate borosilicate glass system. Silicon 2022, 14, 3419–3427. https://doi.org/10.1007/s12633-021-01125-0.Search in Google Scholar
3. Shaaban, K. S., Alyousef, H. A., Alotaibi, B. M. A., El-Rehim, A. F., Wahab, E. A. A. The vital role of TiO2 on the bioglass system P2O5-CaO-B2O3-SiO2-K2O for optics and shielding characteristics. J. Inorg. Organomet. Polym. 2022, 32, 4295–4303. https://doi.org/10.1007/s10904-022-02446-2.Search in Google Scholar
4. Shaaban, K. S., Alotaibi, B. M., Algarni, S. A., Al-Harbi, N., Wahab, E. A. A. Chemical composition, mechanical, and thermal characteristics of bioactive glass for better processing features. Silicon 2022, 14, 10817–10826. https://doi.org/10.1007/s12633-022-01784-7.Search in Google Scholar
5. Wahab, E. A. A., Al-Baradi, A. M., Sayed, M. A., Ati, M. A., Sayed, A. M., Shaaban, K. S. Crystallization and radiation proficiency of transparent sodium silicate glass doped zirconia. Silicon 2022, 14, 8581–8597. https://doi.org/10.1007/s12633-021-01652-w.Search in Google Scholar
6. Shaaban, K. S., Alotaibi, B. M., Alrowaili, Z. A., Al-Buriahi, M. S., Ashour, A., Yousef, S. Thermal and mechanical studies of cerium molybdenum borosilicate glasses and glass–ceramics. Silicon 2023. https://doi.org/10.1007/s12633-023-02433-3.Search in Google Scholar
7. Al-Baradi, A. M., El-Rehim, A. F. A., Alrowaili, Z. A., Al-Buriahi, M. S., Shaaban, K. S., FT-IR and gamma shielding characteristics of 22SiO2-23Bi2O3-37B2O3-13TiO2-(5-x) LiF-x BaO glasses. Silicon 2022, 14, 7043–7051. https://doi.org/10.1007/s12633-021-01481-x.Search in Google Scholar
8. Al-Baradi, A. M., Wahab, E. A. A., Shaaban, K. S. Preparation and characteristics of B2O3–SiO2–Bi2O3–TiO2–Y2O3 glasses and glass-ceramics. Silicon 2022, 14, 5277–5287. https://doi.org/10.1007/s12633-021-01286-y.Search in Google Scholar
9. Shaaban, K. S., Al-Baradi, A. M., Wahab, E. A. A. The impact of Y2O3 on physical and optical characteristics, polarizability, optical basicity, and dispersion parameters of B2O3–SiO2–Bi2O3–TiO2 glasses. Silicon 2022, 14, 5057–5065; https://doi.org/10.1007/s12633-021-01309-8.Search in Google Scholar
10. Shaaban, K. S., Alotaibi, B. M., Alharbi, N., Alrowaili, Z. A., Al-Buriahi, M. S., Makhlouf, S. A., Abd El-Rehim, A. F. Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications. Radiat. Phys. Chem. 2022, 193, 109995. https://doi.org/10.1016/j.radphyschem.2022.109995.Search in Google Scholar
11. Shaaban, K. S., Alotaibi, B. M., Alharbiy, N., Al-Baradi, A. M., Abd El-Rehim, A. F. Impact of TiO2 on DTA and elastic moduli of calcium potassium borophosphosilicate glasses in prelude for use in dental and orthopedic applications. Silicon 2022, 14, 11991–12000. https://doi.org/10.1007/s12633-022-02029-3.Search in Google Scholar
12. Shaaban, K. S., Alyousef, H. A., El-Rehim, A. F. A. CeO2 reinforced B2O3–SiO2–MoO3 glass system: a characterization study through physical, mechanical and gamma/neutron shields characteristics. Silicon 2022, 14, 12001–12012; https://doi.org/10.1007/s12633-022-02124-5.Search in Google Scholar
13. Shaaban, K. S., Al-Baradi, A. M. and Ali, A. M., The impact of Cr2O3 on the mechanical, physical, and radiation shielding characteristics of Na2B4O7–CaO–SiO2 glasses, Silicon 2022, 14, 10375–10382 (2022). https://doi.org/10.1007/s12633-022-01783-8.Search in Google Scholar
14. Shaaban, K. S., Boukhris, I., Kebaili, I., Al-Buriahi, M. S. Spectroscopic and attenuation shielding studies on B2O3-SiO2-LiF-ZnO-TiO2 Glasses. Silicon 2022, 14, 3091–3100. https://doi.org/10.1007/s12633-021-01080-w.Search in Google Scholar
15. Shaaban, K. S., Al-Baradi, A. M., Ali, A. M. Cr2O3 effect on the structure, optical, and radiation shielding properties of Na2B4O7–SiO2–CaO–Cr2O3 glasses. Appl. Phys. A 2022, 128, 208. https://doi.org/10.1007/s00339-022-05348-9.Search in Google Scholar
16. Abdel Wahab, E. A., Koubisy, M. S. I., Sayyed, M. I., Mahmoud, K. A., Zatsepin, A. F., Makhlouf, S. A., Shaaban, K. S. Novel borosilicate glass system: Na2B4O7-SiO2-MnO2: synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features. J. Non-Cryst. Solids 2021, 553, 120509; https://doi.org/10.1016/j.jnoncrysol.2020.120509.Search in Google Scholar
17. Shaaban, K. S., Alrowaili, Z. A., Al-Baradi, A. M., Ali, A. M., Wahab, E. A. A., Al-Buriahi, M. S. Mechanical and thermodynamic characteristics of 22SiO2-23Bi2O3-37B2O3-13TiO2-(5-x) LiF-x BaO glasses. Silicon 2022, 14, 6457–6465; https://doi.org/10.1007/s12633-021-01441-5.Search in Google Scholar
18. El-Rehim, A. F. A., Zahran, H. Y., Yahia, I. S., Wahab, E. A. A., Shaaban, K. S. Structural, elastic moduli, and radiation shielding of SiO2-TiO2-La2O3-Na2O glasses containing Y2O3. J. Mater. Eng. Perform. 2021, 30, 1872–1884; https://doi.org/10.1007/s11665-021-05513-w.Search in Google Scholar
19. Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., Kurudirek, M. PhyX/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. https://doi.org/10.1016/j.radphyschem.Search in Google Scholar
20. Shaaban, K. S., Alotaibi, B. M., Yousef, E. S. Effect of La2O3 concentration on the structural, optical and radiation-shielding behaviors of titanate borosilicate glasses. J. Electron. Mater. 2023, 52, 3591–3603; https://doi.org/10.1007/s11664-023-10347-4.Search in Google Scholar
21. Abdel Wahab, E. A., El-Maaref, A. A., Shaaban, K. S., Börcsök, J., Abdelawwad, M. Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Opti. Mater. 2021, 111, 110638; https://doi.org/10.1016/j.optmat.2020.110638.Search in Google Scholar
22. Han, L., Song, J., Zhang, Q., Liu, T., Luo, Z., Luo, Z., Lu, A. Synthesis structure and properties of MgO-Al2O3-SiO2-B2O3 transparent glass-ceramics. Silicon 2018, 10, 2685–2693. https://doi.org/10.1007/s12633-018-9806-3.Search in Google Scholar
23. Han, J., Lai, Y., Xiang, Y., Wu, S., Xu, Y., Zeng, Y., Chen, J., Liu, J. Glass structure of the CaO–B2O3–SiO2–Al2O3–ZnO glasses system with different Si content. J. Mater. Sci.: Mater. Electron. 2017, 28, 6131–6137. https://doi.org/10.1007/s10854-016-6291-6.Search in Google Scholar
24. Hordieiev, Y. S., Karasik, E. V., Zaichuk, A. V. Glass formation in the MgO–B2O3–SiO2 system. Silicon 2023, 15, 1085–1091; https://doi.org/10.1007/s12633-022-01745-0.Search in Google Scholar
25. Almuqrin, A. H., Mahmoud, K. A., Wahab, E. A. A., Koubisy, M. S. I., Sayyed, M. I., Shaaban, K. S. Structural, mechanical, and nuclear radiation shielding properties of iron aluminoleadborate glasses. Eur. Phys. J. Plus 2021, 136, 639–655; https://doi.org/10.1140/epjp/s13360-021-01564-z.Search in Google Scholar
26. Tripathy, S. K. Refractive indices of semiconductors from energy gaps. Opt. Mater. 2015, 46, 240–246. https://doi.org/10.1016/j.optmat.2015.04.026.Search in Google Scholar
27. Moss, T. S. Proc. Phys. Soc. Sect. 1950, 63, 167–176. https://doi.org/10.1088/0370-1301/63/3/302.10.1088/0370-1301/63/3/302Search in Google Scholar
28. Ravindra, N. M., Auluck, S., Srivastava, V. K. On the Penn gap in semiconductors. Phys. Status Solidi B 1979, 93, K155–K160. https://doi.org/10.1002/pssb.2220930257.Search in Google Scholar
29. Herve, P. J. L., Vandamme, L. K. J. Infrared Phys. Technol. 1994, 35, 609–615. https://doi.org/10.1016/1350-4495(94)90026-4.Search in Google Scholar
30. Herve, P. J. L., Vandamme, L. K. J. J. Appl. Phys. 1995, 77, 5476–5477. https://doi.org/10.1063/1.359248.Search in Google Scholar
31. El-Rehim, A. F. A., Wahab, E. A. A., Halaka, M. M. A., Shaaban, K. S. Optical properties of SiO2–TiO2–La2O3–Na2O–Y2O3 glasses and a novel process of preparing the parent glass-ceramics. Silicon 2022, 14, 373–384. https://doi.org/10.1007/s12633-021-01002-w.Search in Google Scholar
32. El-Maaref, A. A., Al-Hosiny, N. M., Alyousef, H. A., El-Agmy, R. M., Shaaban, K. S., Wahab, E. A. A. Effect of CeO2/Er2O3 co-doping on spectroscopic properties of zinc fluoroborate glasses. Phys. Scr. 2022, 97, 125831; https://doi.org/10.1088/1402-4896/aca3db.Search in Google Scholar
33. Sayed, M. A., Ali, A. M., Abd El-Rehim, A. F., Abdel Wahab, E. A., Shaaban, K. S. Dispersion parameters, polarizability, and basicity of lithium phosphate glasses. J. Electron. Mater. 2021, 50, 3116–3128. https://doi.org/10.1007/s11664-021-08921-9.Search in Google Scholar
34. Shaaban, K. S., Al-Baradi, A. M., Ali, A. M. Gamma-ray shielding and mechanical characteristics of iron-doped lead phosphosilicate glasses. Silicon 2022, 14, 8971–8979. https://doi.org/10.1007/s12633-022-01702-x.Search in Google Scholar
35. Wahab, E. A. A., Shaaban, K. S., Al-Baradi, A. M. Enhancement of optical and physical parameters of lead zinc silicate glasses by doping W+3 ions. Silicon 2022, 14, 4915. https://doi.org/10.1007/s12633-021-01236-8.Search in Google Scholar
36. Alothman, M. A., Alrowaili, Z. A., Alzahrani, J. S., Wahab, E. A. A., Olarinoye, I. O., Sriwunkum, C., Shaaban, K. S., Al-Buriahi, M. S. Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. J. Alloys Compd. 2021, 882, 160625; https://doi.org/10.1016/j.jallcom.2021.160625.Search in Google Scholar
37. El-Rehim, A. F. A., Shaaban, K. S., Zahran, H. Y., Yahia, I. S., Ali, A. M., Halaka, M. M. A., Makhlouf, S. A., Wahab, E. A. A., Shaaban, E. R. Structural and mechanical properties of lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass–ceramics. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1057–1065; https://doi.org/10.1007/s10904-020-01708-1.Search in Google Scholar
38. Shaaban, K. S., Alotaibi, B. M., Al-Baradi, A. M., Yousef El Sayed, A. A. Exploration of the glass domain in the SiO2-B2O3-TiO2-La2O3 system. Silicon 2023. https://doi.org/10.1007/s12633-023-02351-4.Search in Google Scholar
39. El-Rehim, A. F. A., Shaaban, K. S. Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 4651–4671. https://doi.org/10.1007/s10854-020-05204-7.Search in Google Scholar
40. Alrowaili, Z. A., Al-Baradi, A. M., Sayed, M. A., Mossad Ali, A., Abdel Wahab, E. A., Al-Buriahi, M. S., Shaaban, K. S. The impact of Fe2O3 on the dispersion parameters and gamma/fast neutron shielding characteristics of lithium borosilicate glasses. Optik 2022, 249, 168259. https://doi.org/10.1016/j.ijleo.2021.168259.Search in Google Scholar
41. Mahmoud, K. H., Elsayed, K. A., Wahab, E. A. A., Abdel-Rahim, F. M., Shaaban, K. S. Structural and radiation shielding simulation of B2O3–SiO2–LiF–ZnO–TiO2 glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 16182–16193. https://doi.org/10.1007/s10854-021-06165-1.Search in Google Scholar
42. El-Maaref, A. A., Alotaibi, B. M., Alharbi, N., El-Rehim, A. F. A., Shaaban, K. S. Effect of Fe2O3 as an aggregate replacement on mechanical, and gamma/neutron radiation shielding properties of phosphoaluminate glasses. J. Inorg. Organomet. Polym. 2022, 32, 3117–3127; https://doi.org/10.1007/s10904-022-02345-6.Search in Google Scholar
43. Shaaban, K. S., Alomairy, S., Al-Buriahi, M. S. Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 26034–26048. https://doi.org/10.1007/s10854-021-05885-8.Search in Google Scholar
44. Wahab, E. A. A., Alyousef, H. A., El-Rehim, A. F. A., Shaaban, K. S. Basicity, optical features, and neutron/charged particle attenuation characteristics of P2O5-As2O3-PbO glasses doped with tungsten ions. J. Electron. Mater. 2023, 52, 219–236. https://doi.org/10.1007/s11664-022-09969-x.Search in Google Scholar
45. Shaaban, K. S., Alotaibi, B. M., Alharbiy, N., El-Rehim, A. F. A. Fabrication of lithium borosilicate glasses containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and highly efficient shield. Appl. Phys. A 2022, 128, 333; https://doi.org/10.1007/s00339-022-05474-4.10.1007/s00339-022-05474-4Search in Google Scholar
46. Shaaban, K. S., Al-Baradi, A. M., Wahab, E. A. A. The Impact of Y2O3 on physical and optical characteristics, polarizability, optical basicity, and dispersion parameters of B2O3–SiO2–Bi2O3–TiO2 glasses. Silicon 2022, 14, 5057–5065. https://doi.org/10.1007/s12633-021-01309-8.Search in Google Scholar
47. Alyousef, H. A., Alrowaili, Z. A., Saad, M., Al-Mohiy, H., Alshihri, A. A., Shaaban, K. S., Al-Buriahi, M. S., Abdel Wahab, E. A., Examinations of mechanical, and shielding properties of CeO2 reinforced B2O3–ZnF2–Er2O3–ZnO glasses for gamma-ray shield and neutron applications. Heliyon 2023, 9, E14435. https://doi.org/10.1016/j.heliyon.2023.e14435.Search in Google Scholar PubMed PubMed Central
48. Shaaban, K. S., Boukhris, I., Kebaili, I., Al-Buriahi, M. S. Spectroscopic and attenuation shielding studies on B2O3-SiO2-LiF-ZnO-TiO2 glasses. Silicon 2022, 14, 3091; https://doi.org/10.1007/s12633-021-01080-w.Search in Google Scholar
49. Shaaban, K. S., Al-Baradi, A. M., Alotaibi, B. M., Abd El-Rehim, A. F. Mechanical and radiation shielding features of lithium titanophosphate glasses doped BaO. J. Mater. Res. Technol. 2023, 23, 756–764. https://doi.org/10.1016/j.jmrt.2023.01.062.Search in Google Scholar
50. Shaaban, K. S., Alyousef, H. A., El-Rehim, A. F. A. CeO2 Reinforced B2O3–SiO2–MoO3 glass system: a characterization study through physical, mechanical and gamma/neutron shields characteristics. Silicon 2022, 14, 12001. https://doi.org/10.1007/s12633-022-02124-5.Search in Google Scholar
51. Saddeek, Y. B., Shaaban, K. H. S., Elsaman, R., El-Taher, Atef, A. T. Z. Attenuation-density anomalous relationship of lead alkali borosilicate glasses. Radiat. Phys. Chem. 2018, 150, 182–188; https://doi.org/10.1016/j.radphyschem.2018.04.028.Search in Google Scholar
52. El-Rehim, A. F. A., Shaaban, K. S. Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J. Mater. Sci.: Mater. Electron. 2021, 32, 4651–4671; https://doi.org/10.1007/s10854-020-05204-7.Search in Google Scholar
53. Algarni, S. A., El-Maaref, A. A., Alotaibi, B. M., Nuha Al-Harbi, A. M., El-Rehim, A. F. A., Wahab, E. A. A., Shaaban, K. S. Physical, optical, and radiation shielding features of yttrium lithium borate glasses. J. Inorg. Organomet. Polym. 2022, 32, 2873–2881. https://doi.org/10.1007/s10904-022-02321-0.Search in Google Scholar
54. Rammah, Y. S., El-Agawany, F. I., Wahab, E. A. A., Hessien, M. M., Shaaban, K. S. Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat. Phys. Chem. 2022, 193, 109956; https://doi.org/10.1016/j.radphyschem.2021.109956.Search in Google Scholar
55. Anani, M., Mathieu, C., Lebid, S., Amar, Y., Chama, Z., Abid, H. Comput. Mater. Sci. 2008, 41, 570–757. https://doi.org/10.1016/j.commatsci.2007.05.023.Search in Google Scholar
56. Kumar, V., Singh, J. K. Model for calculating the refractive index of different materials. Ind. J. Pure Appl. Phys. 2010, 48, 571–574.Search in Google Scholar
57. Reddy, R., Nazeer Ahammed, Y., Rama Gopal, K., Raghuram, D. Opt. Mater. 1998, 10, 95–100; https://doi.org/10.1016/s0925-3467(97)00171-7.Search in Google Scholar
58. El-Rehim, A. F. A., Ali, A. M., Zahran, H. Y., Yahia, I. S., Shaaban, K. S. Spectroscopic, structural, thermal, and mechanical properties of B2O3-CeO2-PbO2 glasses. J. Inorg. Organomet. Polym. 2021, 31, 1774; https://doi.org/10.1007/s10904-020-01799-w.Search in Google Scholar
59. Shaaban, K. S., Al-Baradi, A. M., Ali, A. M. Investigation of BaO reinforced TiO2–P2O5–li2O glasses for optical and neutron shielding applications. RSC Adv. 2022, 12, 3036–3043; https://doi.org/10.1039/d2ra00171c.Search in Google Scholar PubMed PubMed Central
60. Alomairy, S., Aboraia, A. M., Shaaban, E. R., Shaaban, K. S. Comparative studies on spectroscopic and crystallization properties of Al2O3 -Li2O- B2O3-TiO2 glasses. Braz J. Phys. 2021, 51, 1237–1248. https://doi.org/10.1007/s13538-021-00928-1.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Excitation functions of the 197Au(p,pxn) and 197Au(p,xn) reactions
- Measurement of spectrum-averaged cross sections of the (n,p) and (n,n′) reactions on strontium by fast neutrons of a TRIGA reactor: comparison with integrated data from excitation functions of various data libraries
- Extraction of uranium and rare earths from mineralized ferruginous sandstone, southwestern Sinai
- Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite
- Separation of 71,72As from alpha-particle induced reaction on gallium oxide target using naturally occurring alkaloid caffeine
- Quality characteristics of white button mushrooms (Agaricus bisporus) affected by gamma irradiation and volatile oils during storage
- A closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses
Articles in the same Issue
- Frontmatter
- Original Papers
- Excitation functions of the 197Au(p,pxn) and 197Au(p,xn) reactions
- Measurement of spectrum-averaged cross sections of the (n,p) and (n,n′) reactions on strontium by fast neutrons of a TRIGA reactor: comparison with integrated data from excitation functions of various data libraries
- Extraction of uranium and rare earths from mineralized ferruginous sandstone, southwestern Sinai
- Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite
- Separation of 71,72As from alpha-particle induced reaction on gallium oxide target using naturally occurring alkaloid caffeine
- Quality characteristics of white button mushrooms (Agaricus bisporus) affected by gamma irradiation and volatile oils during storage
- A closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses