Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite
-
Krishan Kant Singh
, Megha Rawat , Jyoti Rawat , Sanjay K Pathak , Surajit Panja , Priya Dimri , Isha Riyal , Himani Sharma and Charu Dwivedi
Abstract
Here, a novel method of synthesis of a sand-based adsorbent for radioactive Cs+ ion removal is reported. Natural sand has been modified with cobalt hexacyanoferrate (CoHCF) using a simple and effective approach. The detailed physical–chemical characterization of the synthesized adsorbent is carried out using XRD, XPS, UV-visible, FT-IR, ICP-AES and Raman spectroscopy. Cs+ ion batch adsorption studies were conducted radio-analytically, and the sorbent’s adsorption capability was observed to be ∼5 mg g−1. The batch studies revealed that Cs+ ion was selectively adsorbed throughout a broad pH range of 1–10. The rate-controlling steps in the adsorption process, according to kinetic studies, are film diffusion and intraparticular diffusion and the adsorption process follows a second-order kinetics.
Acknowledgements
The author Megha Rawat acknowledges Institute Instrumentation Centre (IIC), IIT Roorkee for XPS facility; MSE facilities, IIT Kanpur for Raman facility; Sophisticated Analytical Instrumentation Facility (SAIF), IIT Bombay for ICP-AES facility, Bhabha Atomic Research Centre, Mumbai for cesium ion adsorption studies and Doon University, Dehradun, Uttarakhand, India, where all rest of the experimental work were carried out.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Liu, H., Wang, H., Yang, Y., Ye, Z., Kuroda, K., Hou, L. In situ assembly of PB/SiO2 composite PVDF membrane for selective removal of trace radiocesium from aqueous environment. Sep. Purif. Technol. 2021, 254, 117; https://doi.org/10.1016/j.seppur.2020.117557.Search in Google Scholar
2. Delchet, C., Tokarev, A., Dumail, X., Toquer, G., Barre, Y., Guari, Y., Guerin, C., Larionova, J., Grandjean, A. Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv. 2012, 2, 5707; https://doi.org/10.1039/c2ra00012a.Search in Google Scholar
3. Mahmoud, M. R., Seliman, A. F. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ from aqueous solutions. Appl. Radiat. Isot. 2014, 91, 141; https://doi.org/10.1016/j.apradiso.2014.05.021.Search in Google Scholar PubMed
4. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H., Zarghami, R. Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution. Chem. Eng. J. 2011, 172, 572; https://doi.org/10.1016/j.cej.2011.06.011.Search in Google Scholar
5. Awual, R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y., Yaita, T. Radioactive cesium removal from nuclear waste by novel inorganic and conjugate adsorbents. Chem. Eng. J. 2014, 242, 127; https://doi.org/10.1016/j.cej.2013.12.072.Search in Google Scholar
6. Moon, J., Kim, K., Jung, C., Shul, Y., Lee, E. Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions. J. Radioanal. Nucl. Chem. 2000, 246, 299; https://doi.org/10.1023/a:1006714322455.10.1023/A:1006714322455Search in Google Scholar
7. Jassal, V., Shanker, U., Shankar, S. Synthesis, characterization and applications of nano-structured metal hexacyanoferrates: a review. J. Environ. Anal. Chem. 2015, 2, 1000128; https://doi.org/10.4172/2380-2391.1000128.Search in Google Scholar
8. Bondar, Y., Kuzenko, S., Han, D., Cho, H. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric. Nanoscale Res. Lett. 2014, 9, 1; https://doi.org/10.1186/1556-276x-9-180.Search in Google Scholar PubMed PubMed Central
9. Zhang, C., Gu, P., Zhao, J., Zhang, D., Deng, Y. Research on the treatment of liquid waste containing cesium by an adsorption microfiltration process with potassium zinc hexacyanoferrate. J. Hazard. Mater. 2009, 167, 1057; https://doi.org/10.1016/j.jhazmat.2009.01.104.Search in Google Scholar PubMed
10. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Diwu, J., Su, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 2015, 137, 6144; https://doi.org/10.1021/jacs.5b02480.Search in Google Scholar PubMed
11. Zhang, J., Chen, L., Dai, X., Zhu, L., Xiao, C., Xu, L., Zhang, Z., Alekseev, E. V., Wang, Y., Zhang, C., Wang, S., Diwu, J., Chai, Z. Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr2+ uptake capabilities. Chem 2019, 5, 977; https://doi.org/10.1016/j.chempr.2019.02.011.Search in Google Scholar
12. Möller, T., Harjula, R., Paajanen, A. Removal of 85Sr and 134Cs radionuclides from acidic and neutral waste solution by metal doped antimony silicates. Sep. Sci. Technol. 2002, 38, 2995; https://doi.org/10.1081/ss-120022583.Search in Google Scholar
13. Carminati, S. A., da Silva, B. L., Bott-Neto, J. L., de Melo, M. A.Jr, Galante, M. T., Fernández, P. S., Longo, C., Bonacin, J. A., Nogueria, A. F. Hematite nanorods photoanodes decorated by cobalt hexacyanoferrate: the role of mixed oxidized states on the enhancement of photoelectrochemical performance. ACS Appl. Energy Mater. 2020, 3, 10097; https://doi.org/10.1021/acsaem.0c01782.Search in Google Scholar
14. Yang, Q., Mo, F., Liu, Z., Ma, L., Li, X., Fang, D., Chen, S., Zhang, S., Zhi, C. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10,000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, 1; https://doi.org/10.1002/adma.201901521.Search in Google Scholar PubMed
15. Moretti, G., Gervais, C. Raman spectroscopy of the photosensitive pigment prussian blue. J. Raman Spectrosc. 2018, 49, 1198; https://doi.org/10.1002/jrs.5366.Search in Google Scholar
16. Mink, J., Stirling, A., Ojwang, D. O., Svensson, G., Mihály, J., Németh, C., Drees, M., Hajba, L. Vibrational properties and bonding analysis of copper hexacyanoferrate complexes in solid state. Appl. Spectrosc. Rev. 2019, 54, 369; https://doi.org/10.1080/05704928.2018.1459659.Search in Google Scholar
17. Bijalwan, K., Kandwal, P., Rawat, J., Kainthola, A., Sharma, M., Sharma, H., Mishra, A., Dwivedi, C. DFT supported experimental investigation of strain induced interfacial modification in Au–Ag bimetallic nanoparticles coated on activated sand. Appl. Surf. Sci. 2022, 11, 100315; https://doi.org/10.1016/j.apsadv.2022.100315.Search in Google Scholar
18. Rohaeti, E., Hikmawati, I. Production of semiconductor materials silicon from silica rice husk waste as alternative silicon sources. Mater. Sci. Technol. 2010, 1, 2.Search in Google Scholar
19. Ziółkowska, D., Syrotynska, I., Shyichuk, A., Lamkiewicz, J. Determination of SLES in personal care products by colloid titration with light reflection measurements. Molecules 2021, 26, 92; https://doi.org/10.3390/molecules26092716.Search in Google Scholar PubMed PubMed Central
20. Bindu, P., Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123; https://doi.org/10.1007/s40094-014-0141-9.Search in Google Scholar
21. Mote, V. D., Purushotham, Y., Dole, B. N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 1; https://doi.org/10.1186/2251-7235-6-6.Search in Google Scholar
22. Kung, M. L., Lin, P. Y., Hsieh, C. W., Hsieh, S. Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and labeling. Nano Res. 2014, 7, 1164; https://doi.org/10.1007/s12274-014-0479-y.Search in Google Scholar
23. Jiang, H., Zhang, H., Kang, Q., Ma, H., Tong, Y., Gao, F., Lu, Q. Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation. Sci. Rep. 2019, 9, 1; https://doi.org/10.1038/s41598-019-51979-z.Search in Google Scholar PubMed PubMed Central
24. Bu, X., Wang, G., Tian, Y. Foreign In3+ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting. Nanoscale 2017, 9, 17513; https://doi.org/10.1039/c7nr04651k.Search in Google Scholar PubMed
25. Wang, S., He, P., He, M., Jia, L., Chen, N., Dong, M., Liu, H., Wang, X., Zhang, Y., Zhou, L., Gao, J., Lei, H., Dong, F. Content-dependent electroactivity enhancement of nickel hexacyanoferrate/multi-walled carbon nanotubes electrocatalyst: cost-efficient construction and promising application for alkaline water splitting. Int. J. Hydrogen Energy 2020, 45, 2754; https://doi.org/10.1016/j.ijhydene.2019.11.159.Search in Google Scholar
26. Cai, W. R., Zhang, G. Y., Song, T., Zhang, X. J., Shan, D. Cobalt hexacyanoferrate electrodeposited on electrode with the assistance of laponite: the enhanced electrochemical sensing of captopril. Electrochem. Acta. 2016, 198, 32; https://doi.org/10.1016/j.electacta.2016.03.080.Search in Google Scholar
27. Bui, H. T., Ahn, D. Y., Shrestha, N. K., Sung, M. M., Lee, J. K., Han, S. H. Self-assembly of cobalt hexacyanoferrate crystals in 1-D array using ion exchange transformation route for enhanced electrocatalytic oxidation of alkaline and neutral water. J. Mater. Chem. A. 2016, 4, 9781; https://doi.org/10.1039/c6ta03436e.Search in Google Scholar
28. Yan, X., Xu, T., Chen, G., Yang, S., Liu, H., Xue, Q. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D. Appl. Phys. 2004, 37, 907; https://doi.org/10.1088/0022-3727/37/6/015.Search in Google Scholar
29. Wang, Z., Bakshi, S., Li, C., Parikh, S. J., Hsieh, H. S., Pignatello, J. J. Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer. J. Colloid Interface Sci. 2020, 579, 258; https://doi.org/10.1016/j.jcis.2020.06.054.Search in Google Scholar PubMed
30. Sneha, R. R. Synthesis and characterization of magnetic hexacyano ferrate (II) polymeric nano composite for separation of cesium from radioactive waste solutions. J. Colloid Interface Sci. 2012, 388, 21; https://doi.org/10.1016/j.jcis.2012.08.042.Search in Google Scholar PubMed
31. Vincent, T., Vincent, C., Barre, Y., Guari, Y., Le, S. G., Guibal, E. Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J. Mater. Chem. A. 2014, 2, 10007; https://doi.org/10.1039/c4ta01128g.Search in Google Scholar
32. Vipin, A. K., Ling, S., Fugetsu, B. Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydr. Polym. 2014, 111, 477; https://doi.org/10.1016/j.carbpol.2014.04.037.Search in Google Scholar PubMed
33. Ho, Y., McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 1998, 76, 332; https://doi.org/10.1205/095758298529696.Search in Google Scholar
34. Yang, X., Duri, B. A. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J. Colloid Interface Sci. 2005, 287, 25; https://doi.org/10.1016/j.jcis.2005.01.093.Search in Google Scholar PubMed
35. Boyd, G. E., Adamson, A. W., Myers, L. S. The exchange adsorption of ions from the aqueous solutions by organic zeolites II kinetics. J. Am. Chem. Soc. 1947, 69, 2836; https://doi.org/10.1021/ja01203a066.Search in Google Scholar PubMed
36. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361; https://doi.org/10.1021/ja02242a004.Search in Google Scholar
37. Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Search in Google Scholar
38. Allen, S., Gan, Q., Matthews, R., Johnson, P. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour. Technol. 2003, 88, 143; https://doi.org/10.1016/s0960-8524(02)00281-x.Search in Google Scholar PubMed
39. Dwivedi, C., Pathak, S. K., Kumar, M., Tripathi, S. C., Bajaj, P. N. Potassium cobalt hexacyano ferrate-gel beads for cesium removal: kinetics and sorption studies. RSC Adv. 2013, 44, 22102; https://doi.org/10.1039/c3ra43463j.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ract-2022-0085).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Excitation functions of the 197Au(p,pxn) and 197Au(p,xn) reactions
- Measurement of spectrum-averaged cross sections of the (n,p) and (n,n′) reactions on strontium by fast neutrons of a TRIGA reactor: comparison with integrated data from excitation functions of various data libraries
- Extraction of uranium and rare earths from mineralized ferruginous sandstone, southwestern Sinai
- Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite
- Separation of 71,72As from alpha-particle induced reaction on gallium oxide target using naturally occurring alkaloid caffeine
- Quality characteristics of white button mushrooms (Agaricus bisporus) affected by gamma irradiation and volatile oils during storage
- A closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses
Articles in the same Issue
- Frontmatter
- Original Papers
- Excitation functions of the 197Au(p,pxn) and 197Au(p,xn) reactions
- Measurement of spectrum-averaged cross sections of the (n,p) and (n,n′) reactions on strontium by fast neutrons of a TRIGA reactor: comparison with integrated data from excitation functions of various data libraries
- Extraction of uranium and rare earths from mineralized ferruginous sandstone, southwestern Sinai
- Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite
- Separation of 71,72As from alpha-particle induced reaction on gallium oxide target using naturally occurring alkaloid caffeine
- Quality characteristics of white button mushrooms (Agaricus bisporus) affected by gamma irradiation and volatile oils during storage
- A closer inspection of the structural, mechanical, optical and radiation shielding properties of GeO2-doped magnesium-telluroborate glasses