Startseite Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cesium ion removal from low-level radioactive wastewater utilizing synthesized cobalt hexacyanoferrate-sand composite

  • Krishan Kant Singh , Megha Rawat , Jyoti Rawat , Sanjay K Pathak , Surajit Panja , Priya Dimri , Isha Riyal , Himani Sharma und Charu Dwivedi EMAIL logo
Veröffentlicht/Copyright: 26. Juni 2023

Abstract

Here, a novel method of synthesis of a sand-based adsorbent for radioactive Cs+ ion removal is reported. Natural sand has been modified with cobalt hexacyanoferrate (CoHCF) using a simple and effective approach. The detailed physical–chemical characterization of the synthesized adsorbent is carried out using XRD, XPS, UV-visible, FT-IR, ICP-AES and Raman spectroscopy. Cs+ ion batch adsorption studies were conducted radio-analytically, and the sorbent’s adsorption capability was observed to be ∼5 mg g−1. The batch studies revealed that Cs+ ion was selectively adsorbed throughout a broad pH range of 1–10. The rate-controlling steps in the adsorption process, according to kinetic studies, are film diffusion and intraparticular diffusion and the adsorption process follows a second-order kinetics.


Corresponding author: Charu Dwivedi, Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, Uttarakhand, India. E-mail:

Krishan Kant Singh and Megha Rawat equally contributed to this manuscript.


Acknowledgements

The author Megha Rawat acknowledges Institute Instrumentation Centre (IIC), IIT Roorkee for XPS facility; MSE facilities, IIT Kanpur for Raman facility; Sophisticated Analytical Instrumentation Facility (SAIF), IIT Bombay for ICP-AES facility, Bhabha Atomic Research Centre, Mumbai for cesium ion adsorption studies and Doon University, Dehradun, Uttarakhand, India, where all rest of the experimental work were carried out.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liu, H., Wang, H., Yang, Y., Ye, Z., Kuroda, K., Hou, L. In situ assembly of PB/SiO2 composite PVDF membrane for selective removal of trace radiocesium from aqueous environment. Sep. Purif. Technol. 2021, 254, 117; https://doi.org/10.1016/j.seppur.2020.117557.Suche in Google Scholar

2. Delchet, C., Tokarev, A., Dumail, X., Toquer, G., Barre, Y., Guari, Y., Guerin, C., Larionova, J., Grandjean, A. Extraction of radioactive cesium using innovative functionalized porous materials. RSC Adv. 2012, 2, 5707; https://doi.org/10.1039/c2ra00012a.Suche in Google Scholar

3. Mahmoud, M. R., Seliman, A. F. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of 137Cs+ from aqueous solutions. Appl. Radiat. Isot. 2014, 91, 141; https://doi.org/10.1016/j.apradiso.2014.05.021.Suche in Google Scholar PubMed

4. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H., Zarghami, R. Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution. Chem. Eng. J. 2011, 172, 572; https://doi.org/10.1016/j.cej.2011.06.011.Suche in Google Scholar

5. Awual, R., Suzuki, S., Taguchi, T., Shiwaku, H., Okamoto, Y., Yaita, T. Radioactive cesium removal from nuclear waste by novel inorganic and conjugate adsorbents. Chem. Eng. J. 2014, 242, 127; https://doi.org/10.1016/j.cej.2013.12.072.Suche in Google Scholar

6. Moon, J., Kim, K., Jung, C., Shul, Y., Lee, E. Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions. J. Radioanal. Nucl. Chem. 2000, 246, 299; https://doi.org/10.1023/a:1006714322455.10.1023/A:1006714322455Suche in Google Scholar

7. Jassal, V., Shanker, U., Shankar, S. Synthesis, characterization and applications of nano-structured metal hexacyanoferrates: a review. J. Environ. Anal. Chem. 2015, 2, 1000128; https://doi.org/10.4172/2380-2391.1000128.Suche in Google Scholar

8. Bondar, Y., Kuzenko, S., Han, D., Cho, H. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric. Nanoscale Res. Lett. 2014, 9, 1; https://doi.org/10.1186/1556-276x-9-180.Suche in Google Scholar PubMed PubMed Central

9. Zhang, C., Gu, P., Zhao, J., Zhang, D., Deng, Y. Research on the treatment of liquid waste containing cesium by an adsorption microfiltration process with potassium zinc hexacyanoferrate. J. Hazard. Mater. 2009, 167, 1057; https://doi.org/10.1016/j.jhazmat.2009.01.104.Suche in Google Scholar PubMed

10. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Diwu, J., Su, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S. Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 2015, 137, 6144; https://doi.org/10.1021/jacs.5b02480.Suche in Google Scholar PubMed

11. Zhang, J., Chen, L., Dai, X., Zhu, L., Xiao, C., Xu, L., Zhang, Z., Alekseev, E. V., Wang, Y., Zhang, C., Wang, S., Diwu, J., Chai, Z. Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr2+ uptake capabilities. Chem 2019, 5, 977; https://doi.org/10.1016/j.chempr.2019.02.011.Suche in Google Scholar

12. Möller, T., Harjula, R., Paajanen, A. Removal of 85Sr and 134Cs radionuclides from acidic and neutral waste solution by metal doped antimony silicates. Sep. Sci. Technol. 2002, 38, 2995; https://doi.org/10.1081/ss-120022583.Suche in Google Scholar

13. Carminati, S. A., da Silva, B. L., Bott-Neto, J. L., de Melo, M. A.Jr, Galante, M. T., Fernández, P. S., Longo, C., Bonacin, J. A., Nogueria, A. F. Hematite nanorods photoanodes decorated by cobalt hexacyanoferrate: the role of mixed oxidized states on the enhancement of photoelectrochemical performance. ACS Appl. Energy Mater. 2020, 3, 10097; https://doi.org/10.1021/acsaem.0c01782.Suche in Google Scholar

14. Yang, Q., Mo, F., Liu, Z., Ma, L., Li, X., Fang, D., Chen, S., Zhang, S., Zhi, C. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10,000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, 1; https://doi.org/10.1002/adma.201901521.Suche in Google Scholar PubMed

15. Moretti, G., Gervais, C. Raman spectroscopy of the photosensitive pigment prussian blue. J. Raman Spectrosc. 2018, 49, 1198; https://doi.org/10.1002/jrs.5366.Suche in Google Scholar

16. Mink, J., Stirling, A., Ojwang, D. O., Svensson, G., Mihály, J., Németh, C., Drees, M., Hajba, L. Vibrational properties and bonding analysis of copper hexacyanoferrate complexes in solid state. Appl. Spectrosc. Rev. 2019, 54, 369; https://doi.org/10.1080/05704928.2018.1459659.Suche in Google Scholar

17. Bijalwan, K., Kandwal, P., Rawat, J., Kainthola, A., Sharma, M., Sharma, H., Mishra, A., Dwivedi, C. DFT supported experimental investigation of strain induced interfacial modification in Au–Ag bimetallic nanoparticles coated on activated sand. Appl. Surf. Sci. 2022, 11, 100315; https://doi.org/10.1016/j.apsadv.2022.100315.Suche in Google Scholar

18. Rohaeti, E., Hikmawati, I. Production of semiconductor materials silicon from silica rice husk waste as alternative silicon sources. Mater. Sci. Technol. 2010, 1, 2.Suche in Google Scholar

19. Ziółkowska, D., Syrotynska, I., Shyichuk, A., Lamkiewicz, J. Determination of SLES in personal care products by colloid titration with light reflection measurements. Molecules 2021, 26, 92; https://doi.org/10.3390/molecules26092716.Suche in Google Scholar PubMed PubMed Central

20. Bindu, P., Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123; https://doi.org/10.1007/s40094-014-0141-9.Suche in Google Scholar

21. Mote, V. D., Purushotham, Y., Dole, B. N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 1; https://doi.org/10.1186/2251-7235-6-6.Suche in Google Scholar

22. Kung, M. L., Lin, P. Y., Hsieh, C. W., Hsieh, S. Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and labeling. Nano Res. 2014, 7, 1164; https://doi.org/10.1007/s12274-014-0479-y.Suche in Google Scholar

23. Jiang, H., Zhang, H., Kang, Q., Ma, H., Tong, Y., Gao, F., Lu, Q. Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation. Sci. Rep. 2019, 9, 1; https://doi.org/10.1038/s41598-019-51979-z.Suche in Google Scholar PubMed PubMed Central

24. Bu, X., Wang, G., Tian, Y. Foreign In3+ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting. Nanoscale 2017, 9, 17513; https://doi.org/10.1039/c7nr04651k.Suche in Google Scholar PubMed

25. Wang, S., He, P., He, M., Jia, L., Chen, N., Dong, M., Liu, H., Wang, X., Zhang, Y., Zhou, L., Gao, J., Lei, H., Dong, F. Content-dependent electroactivity enhancement of nickel hexacyanoferrate/multi-walled carbon nanotubes electrocatalyst: cost-efficient construction and promising application for alkaline water splitting. Int. J. Hydrogen Energy 2020, 45, 2754; https://doi.org/10.1016/j.ijhydene.2019.11.159.Suche in Google Scholar

26. Cai, W. R., Zhang, G. Y., Song, T., Zhang, X. J., Shan, D. Cobalt hexacyanoferrate electrodeposited on electrode with the assistance of laponite: the enhanced electrochemical sensing of captopril. Electrochem. Acta. 2016, 198, 32; https://doi.org/10.1016/j.electacta.2016.03.080.Suche in Google Scholar

27. Bui, H. T., Ahn, D. Y., Shrestha, N. K., Sung, M. M., Lee, J. K., Han, S. H. Self-assembly of cobalt hexacyanoferrate crystals in 1-D array using ion exchange transformation route for enhanced electrocatalytic oxidation of alkaline and neutral water. J. Mater. Chem. A. 2016, 4, 9781; https://doi.org/10.1039/c6ta03436e.Suche in Google Scholar

28. Yan, X., Xu, T., Chen, G., Yang, S., Liu, H., Xue, Q. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D. Appl. Phys. 2004, 37, 907; https://doi.org/10.1088/0022-3727/37/6/015.Suche in Google Scholar

29. Wang, Z., Bakshi, S., Li, C., Parikh, S. J., Hsieh, H. S., Pignatello, J. J. Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer. J. Colloid Interface Sci. 2020, 579, 258; https://doi.org/10.1016/j.jcis.2020.06.054.Suche in Google Scholar PubMed

30. Sneha, R. R. Synthesis and characterization of magnetic hexacyano ferrate (II) polymeric nano composite for separation of cesium from radioactive waste solutions. J. Colloid Interface Sci. 2012, 388, 21; https://doi.org/10.1016/j.jcis.2012.08.042.Suche in Google Scholar PubMed

31. Vincent, T., Vincent, C., Barre, Y., Guari, Y., Le, S. G., Guibal, E. Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. J. Mater. Chem. A. 2014, 2, 10007; https://doi.org/10.1039/c4ta01128g.Suche in Google Scholar

32. Vipin, A. K., Ling, S., Fugetsu, B. Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydr. Polym. 2014, 111, 477; https://doi.org/10.1016/j.carbpol.2014.04.037.Suche in Google Scholar PubMed

33. Ho, Y., McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 1998, 76, 332; https://doi.org/10.1205/095758298529696.Suche in Google Scholar

34. Yang, X., Duri, B. A. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J. Colloid Interface Sci. 2005, 287, 25; https://doi.org/10.1016/j.jcis.2005.01.093.Suche in Google Scholar PubMed

35. Boyd, G. E., Adamson, A. W., Myers, L. S. The exchange adsorption of ions from the aqueous solutions by organic zeolites II kinetics. J. Am. Chem. Soc. 1947, 69, 2836; https://doi.org/10.1021/ja01203a066.Suche in Google Scholar PubMed

36. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361; https://doi.org/10.1021/ja02242a004.Suche in Google Scholar

37. Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Suche in Google Scholar

38. Allen, S., Gan, Q., Matthews, R., Johnson, P. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour. Technol. 2003, 88, 143; https://doi.org/10.1016/s0960-8524(02)00281-x.Suche in Google Scholar PubMed

39. Dwivedi, C., Pathak, S. K., Kumar, M., Tripathi, S. C., Bajaj, P. N. Potassium cobalt hexacyano ferrate-gel beads for cesium removal: kinetics and sorption studies. RSC Adv. 2013, 44, 22102; https://doi.org/10.1039/c3ra43463j.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2022-0085).


Received: 2022-08-26
Accepted: 2023-05-31
Published Online: 2023-06-26
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0085/html
Button zum nach oben scrollen