Home Soya bean derived activated carbon as an efficient adsorbent for capture of valuable heavy metals from waste aqueous solution
Article
Licensed
Unlicensed Requires Authentication

Soya bean derived activated carbon as an efficient adsorbent for capture of valuable heavy metals from waste aqueous solution

  • Ahmed M. Masoud EMAIL logo , Adel A. El-Zahhar , Ahmed M. A. El Naggar , Asmaa I. Zahran EMAIL logo , Gamil A. A. Al-Hazmi and Mohamed H. Taha
Published/Copyright: November 9, 2022

Abstract

The removal of hazardous metal ions from liquid waste effluents is very important for water as well as environmental safety. In this regard, this article discusses in detail the U(VI) uptake from aquatic environment using biomass-based Soya Bean activated carbon (labeled as AC-SB). XRD, SEM, FTIR, Raman, and BET analysis were used to characterize the synthesized AC-SB sorbent. Batch-type experiments were used to investigate the effect of various parameters on adsorption efficiency, including pH, metal-ion concentration, temperature, and contact time. The sorption experimental data have been described well with pseudo-second-order kinetic mathematical equations. The equilibrium state of the uptake reaction was 120 min. The Langmuir isotherm model accurately described the equilibrium process which declares that the uranium sorption is a monolayer and homogeneous process. The sorption capacity of the prepared AC was 32.7 mg g−1. Thermodynamic analysis explore that the U(VI) uptake process is endothermic, feasible and spontenous process. The displayed results demonstrate that the prepared AC-SB sorbent could be used as the proper material for uranium sorption from real matrix samples.


Corresponding authors: Ahmed M. Masoud, Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt, E-mail: ; and Asmaa I. Zahran, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El-Zomer St., Nasr City, Cairo, Egypt, E-mail:

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large groups (R.G.P. 2/128/43).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors of this manuscript have no competing or conflict of interest with any person or any organization.

References

1. Karić, N., Maia, A. S., Teodorović, A., Atanasova, N., Langergraber, G., Crini, G., Ribeiro, A. R. L., Đolić, M. Bio-waste valorisation: agricultural wastes as biosorbents for removal of inorganic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239; https://doi.org/10.1016/j.ceja.2021.100239.Search in Google Scholar

2. Abou-Hadid, A. F., El-Behairy, A. U., Elmalih, M. M., Amdeha, E., El Naggar, A. M. A., Taha, M. H., Hussein, E. M. Production of efficient carbon fiber from different solid waste residuals for adsorption of hazardous metals from wastewater samples. Biomass Convers. Biorefinery 2022, 1, 1.10.1007/s13399-022-03097-6Search in Google Scholar

3. Akash, S., Sivaprakash, B., Raja, V. C. V., Rajamohan, N., Muthusamy, G. Remediation techniques for uranium removal from polluted environment – review on methods, mechanism and toxicology. Environ. Pollut. 2022, 302, 119068; https://doi.org/10.1016/j.envpol.2022.119068.Search in Google Scholar PubMed

4. Balaram, V., Rani, A., Rathore, D. P. S. Uranium in groundwater in parts of India and world: a comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosyst. Geoenviron. 2022, 1, 100043; https://doi.org/10.1016/j.geogeo.2022.100043.Search in Google Scholar

5. Khawassek, Y. M., Masoud, A. M., Taha, M. H., Hussein, A. E. M. Kinetics and thermodynamics of uranium ion adsorption from waste solution using amberjet 1200 H as cation exchanger. J. Radioanal. Nucl. Chem. 2018, 315, 493; https://doi.org/10.1007/s10967-017-5692-1.Search in Google Scholar

6. Masoud, A. M. Sorption behavior of uranium from sulfate media using purolite A400 as a strong base anion exchange resin. Int. J. Environ. Anal. Chem. 2020, 102, 3124–3146.10.1080/03067319.2020.1763974Search in Google Scholar

7. Gu, B., Liang, L., Dickey, M. J., Yin, X., Dai, S. Reductive precipitation of uranium(VI) by zero-valent iron. Environ. Sci. Technol. 1998, 32, 3366; https://doi.org/10.1021/es980010o.Search in Google Scholar

8. Schulte-Herbrüggen, H. M. A., Semião, A. J. C., Chaurand, P., Graham, M. C. Effect of pH and pressure on uranium removal from drinking water using NF/RO membranes. Environ. Sci. Technol. 2016, 50, 5817; https://doi.org/10.1021/acs.est.5b05930.Search in Google Scholar PubMed

9. Cheira, M. F. Solvent extraction of uranium and vanadium from carbonate leach solutions of ferruginous siltstone using cetylpyridinium carbonate in kerosene. Chem. Pap. 2020, 74, 2247; https://doi.org/10.1007/s11696-020-01073-w.Search in Google Scholar

10. Yang, F., Xie, S., Wang, G., Yu, C. W., Liu, H., Liu, Y. Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 20246; https://doi.org/10.1007/s11356-020-08381-4.Search in Google Scholar PubMed

11. Younes, A. A., Masoud, A. M., Taha, M. H. Uranium sorption from aqueous solutions using polyacrylamide-based chelating sorbents. Separ. Sci. Technol. 2018, 53, 2573; https://doi.org/10.1080/01496395.2018.1467450.Search in Google Scholar

12. Hassanein, T. F., Masoud, A. M., Mohamed, W. S., Taha, M. H., Guibal, E. Synthesis of polyamide 6/nano-hydroxyapatite hybrid (PA6/n-HAp) for the sorption of rare earth elements and uranium. J. Environ. Chem. Eng. 2021, 9, 104731; https://doi.org/10.1016/j.jece.2020.104731.Search in Google Scholar

13. Aslani, C. K., Amik, O. Active carbon/PAN composite adsorbent for uranium removal: modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl. Radiat. Isot. 2021, 168, 109474; https://doi.org/10.1016/j.apradiso.2020.109474.Search in Google Scholar PubMed

14. Alahabadi, A., Singh, P., Raizada, P., Anastopoulos, I., Sivamani, S., Dotto, G. L., Landarani, M., Ivanets, A., Kyzas, G. Z., Hosseini-Bandegharaei, A. Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125516; https://doi.org/10.1016/j.colsurfa.2020.125516.Search in Google Scholar

15. Zhang, Y., Ye, T., Wang, Y., Zhou, L., Liu, Z. Adsorption of uranium(VI) from aqueous solution by phosphorylated luffa rattan activated carbon. J. Radioanal. Nucl. Chem. 2021, 327, 1267; https://doi.org/10.1007/s10967-020-07592-w.Search in Google Scholar

16. Lay, M., Rusli, A., Abdullah, M. K., Hamid, Z. A. A., Shuib, R. K. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites. Compos. B Eng. 2020, 201, 108366; https://doi.org/10.1016/j.compositesb.2020.108366.Search in Google Scholar

17. Cuña, A., Vega, M. R. O., da Silva, E. L., Tancredi, N., Radtke, C., Malfatti, C. F. Nitric acid functionalization of carbon monoliths for supercapacitors: effect on the electrochemical properties. Int. J. Hydrogen Energy 2016, 41, 12127; https://doi.org/10.1016/j.ijhydene.2016.04.169.Search in Google Scholar

18. Sheldon, R. A. Green chemistry, catalysis and valorization of waste biomass. J. Mol. Catal. Chem. 2016, 422, 3; https://doi.org/10.1016/j.molcata.2016.01.013.Search in Google Scholar

19. Gautam, N., Kate, G., Chaurasia, A. Upgrading of rice husk char obtained by pyrolysis process to amorphous silica and activated carbon. Mater. Today Proc. 2021, 39, 1382; https://doi.org/10.1016/j.matpr.2020.04.859.Search in Google Scholar

20. da Silva, E. L., Torres, M., Portugau, P., Cuña, A. High surface activated carbon obtained from Uruguayan rice husk wastes for supercapacitor electrode applications: correlation between physicochemical and electrochemical properties. J. Energy Storage 2021, 44, 103494; https://doi.org/10.1016/j.est.2021.103494.Search in Google Scholar

21. El Naggar, A. M. A., Ali, M. M., Maksoud, S. A. A., Taha, M. H., Morshedy, A. S., Elzoghby, A. A. Waste generated bio-char supported co-nanoparticles of nickel and cobalt oxides for efficient adsorption of uranium and organic pollutants from industrial phosphoric acid. J. Radioanal. Nucl. Chem. 2019, 320, 741; https://doi.org/10.1007/s10967-019-06529-2.Search in Google Scholar

22. Paraskeva, P., Kalderis, D., Diamadopoulos, E. Production of activated carbon from agricultural by-products. J. Chem. Technol. Biotechnol. 2008, 83, 581; https://doi.org/10.1002/jctb.1847.Search in Google Scholar

23. Taha, M. H., Maksoud, S. A. A., Ali, M. M., El Naggar, A. M. A., Morshedy, A. S., Elzoghby, A. A. Conversion of biomass residual to acid-modified bio-chars for efficient adsorption of organic pollutants from industrial phosphoric acid: an experimental, kinetic and thermodynamic study. Int. J. Environ. Anal. Chem. 2019, 99, 1211; https://doi.org/10.1080/03067319.2019.1618459.Search in Google Scholar

24. Morshedy, A. S., Taha, M. H., El-Aty, D. M. A., Bakry, A., El Naggar, A. M. A. Solid waste sub-driven acidic mesoporous activated carbon structures for efficient uranium capture through the treatment of industrial phosphoric acid. Environ. Technol. Innovat. 2021, 21, 101363; https://doi.org/10.1016/j.eti.2021.101363.Search in Google Scholar

25. Supriya, S., Sriram, G., Ngaini, Z., Kavitha, C., Kurkuri, M., De Padova, I. P., Hegde, G. The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass Valorization 2020, 11, 3821; https://doi.org/10.1007/s12649-019-00675-0.Search in Google Scholar

26. Tongpoothorn, W., Sriuttha, M., Homchan, P., Chanthai, S., Ruangviriyachai, C. Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem. Eng. Res. Des. 2011, 89, 335; https://doi.org/10.1016/j.cherd.2010.06.012.Search in Google Scholar

27. Guo, Y., Rockstraw, D. A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon N. Y. 2006, 44, 1464; https://doi.org/10.1016/j.carbon.2005.12.002.Search in Google Scholar

28. Bhat, V. S., Varghese, A., George, L., Hegde, G. Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J. Electrochem. Soc. 2019, 166, B1097; https://doi.org/10.1149/2.0251913jes.Search in Google Scholar

29. Bhat, V. S., Kanagavalli, P., Sriram, G., John, N. S., Veerapandian, M., Kurkuri, M., Hegde, G. Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste. J. Energy Storage 2020, 32, 101829; https://doi.org/10.1016/j.est.2020.101829.Search in Google Scholar

30. Hussein, A. E. M., Taha, M. H. Uranium removal from nitric acid raffinate solution by solvent immobilized PVC cement. J. Radioanal. Nucl. Chem. 2013, 295, 709; https://doi.org/10.1007/s10967-012-2158-3.Search in Google Scholar

31. Younes, A. A., Masoud, A. M., Taha, M. H. Amino-functionalised cross-linked polyacrylamide for the adsorption of U(VI) ions from contaminated aqueous solutions. Int. J. Environ. Anal. Chem. 2021, 1–14.10.1080/03067319.2021.2003348Search in Google Scholar

32. Elzoghby, A. A., Bakry, A., Masoud, A. M., Mohamed, W. S., Taha, M. H., Hassanein, T. F. Synthesis of polyamide-based nanocomposites using green-synthesized chromium and copper oxides nanoparticles for the sorption of uranium from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 106755; https://doi.org/10.1016/j.jece.2021.106755.Search in Google Scholar

33. Kang, H. J., Kim, J. H. Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of taxus chinensis cell cultures onto sylopute. Biotechnol. Bioproc. Eng. 2019, 24, 513; https://doi.org/10.1007/s12257-019-0001-1.Search in Google Scholar

34. Taha, M. H. Solid-liquid extraction of uranium from industrial phosphoric acid using macroporous cation exchange resins: MTC1600H, MTS9500, and MTS9570. Sep. Sci. Technol. 2020, 59, 1562–1578.10.1080/01496395.2020.1787446Search in Google Scholar

35. Wang, J. S., Hu, X., Liu, Y. G., Xie, S. B, Bao, Z. L. Biosorption of uranium (VI) by immobilized Aspergillus fumigatus beads. J. Environ. Radioact. 2010, 101, 504; https://doi.org/10.1016/j.jenvrad.2010.03.002.Search in Google Scholar PubMed

36. Largitte, L., Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495; https://doi.org/10.1016/j.cherd.2016.02.006.Search in Google Scholar

37. Wu, F. C., Tseng, R. L., Juang, R. S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1; https://doi.org/10.1016/j.cej.2009.04.042.Search in Google Scholar

38. Foo, K. Y., Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2; https://doi.org/10.1016/j.cej.2009.09.013.Search in Google Scholar

39. Li, M., Liu, H., Chen, T., Dong, C., Sun, Y. Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Sci. Total Environ. 2019, 651, 1020; https://doi.org/10.1016/j.scitotenv.2018.09.259.Search in Google Scholar PubMed

40. Mishra, V., Sureshkumar, M. K., Gupta, N., Kaushik, C. P. Study on sorption characteristics of uranium onto biochar derived from Eucalyptus wood. Water Air Soil Pollut. 2017, 228, 1; https://doi.org/10.1007/s11270-017-3480-8.Search in Google Scholar

41. Zhao, C., Liu, J., Tu, H., Li, F., Li, X., Yang, J., Liao, J., Yang, Y., Liu, N., Sun, Q. Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ. Sci. Pollut. Res. 2016, 23, 24846; https://doi.org/10.1007/s11356-016-7722-x.Search in Google Scholar PubMed

42. Gado, M., Rashad, M., Kassab, W., Badran, M. Highly developed surface area thiosemicarbazide biochar derived from aloe vera for efficient adsorption of uranium. Radiochemistry 2021, 63, 353; https://doi.org/10.1134/s1066362221030139.Search in Google Scholar

43. Zhu, M., Liu, R., Chai, H., Yao, J., Chen, Y., Yi, Z. Hazelnut shell activated carbon: a potential adsorbent material for the decontamination of uranium(VI) from aqueous solutions. J. Radioanal. Nucl. Chem. 2016, 310, 1147; https://doi.org/10.1007/s10967-016-5011-2.Search in Google Scholar

44. Donat, R., Erden, K. E. Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells. Radiochim. Acta 2017, 105, 359; https://doi.org/10.1515/ract-2016-2637.Search in Google Scholar

45. Saha, P., Chowdhury, S. Insight into adsorption thermodynamics. Thermodynamics 2011, 16, 349–364; https://doi.org/10.5772/13474.Search in Google Scholar

46. Xie, Y., Chen, C., Ren, X., Wang, X., Wang, H., Wang, X. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180; https://doi.org/10.1016/j.pmatsci.2019.01.005.Search in Google Scholar

47. Kong, L., Zhu, Y., Wang, M., Li, Z., Tan, Z., Xu, R., Tang, H., Chang, X., Xiong, Y., Chen, D. Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC. J. Hazard Mater. 2016, 320, 435; https://doi.org/10.1016/j.jhazmat.2016.08.060.Search in Google Scholar PubMed

48. Yakout, S. M., Metwally, S. S., El-Zakla, T. Uranium sorption onto activated carbon prepared from rice straw: competition with humic acids. Appl. Surf. Sci. 2013, 280, 745; https://doi.org/10.1016/j.apsusc.2013.05.055.Search in Google Scholar

49. Wang, C., Huang, D., He, F., Jin, T., Huang, B., Xu, J., Qian, Y. Efficient removal of uranium(VI) from aqueous solutions by triethylenetetramine-functionalized single-walled carbon nanohorns. ACS Omega 2020, 5, 27789; https://doi.org/10.1021/acsomega.0c02715.Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2022-0098).


Received: 2022-10-06
Accepted: 2022-10-26
Published Online: 2022-11-09
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0098/html
Scroll to top button