Home Physical Sciences Kaolinite/thiourea-formaldehyde composite for efficient U(VI) sorption from commercial phosphoric acid
Article
Licensed
Unlicensed Requires Authentication

Kaolinite/thiourea-formaldehyde composite for efficient U(VI) sorption from commercial phosphoric acid

  • Amir A. Elzoghby , El Sayed A. Haggag EMAIL logo , Osama E. Roshdy , Islam G. Alhindawy and Ahmed M. Masoud
Published/Copyright: November 21, 2022

Abstract

Uranium removal from wet phosphoric acid is a vital process for food and environmental security. The incorporation of thiourea-formaldehyde into the kaolinite networks was performed to obtain an effective and acid-resistant sorbent. The prepared composite was applied for U(VI) uptake from crude phosphoric acid. X-ray diffraction, EDX, scanning electron microscopy, and Fourier transform infrared analyses were carried out to explore the properties of the yield composite. The sorption characteristics, i.e., capacity, kinetic, isotherm, and thermodynamic were investigated. The anticipated data declare that the reaction is fast whereas 60 min is sufficient to reach the equilibrium state. The experimental results obeyed to Pseudo second-order kinetic model and Langmuir isotherm model. The maximum sorption capacity was about 5.8 mg g−1. Thermodynamic parameters displayed that the sorption process is endothermic, feasible, and spontaneous. The displayed results demonstrate that the prepared composite could be used as the proper material for producing eco-friendly fertilizers.


Corresponding author: El Sayed A. Haggag, Nuclear Materials Authority, P.O. Box 530, El Maddi, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None.

  3. Conflict of interest statement: The authors of this manuscript have no competing or conflict of interest with any person or organization.

References

1. Hellal, F., El-Sayed, S., Zewainy, R., Amer, A. Importance of phosphate pock application for sustaining agricultural production in Egypt. Bull. Natl. Res. Cent. 2019, 43, 11. https://doi.org/10.1186/s42269-019-0050-9.Search in Google Scholar

2. Mew, M. C. Phosphate rock costs, prices and resources interaction. Sci. Total Environ. 2016, 542, 1008. https://doi.org/10.1016/j.scitotenv.2015.08.045.Search in Google Scholar PubMed

3. Masoud, A. M., El-Zahhar, A., Bary, E. A. Removal of iron from wet-process phosphoric acid using titanium silicate-polymer composite. Chem. Technol. Indian J. 2015, 10, 210.Search in Google Scholar

4. Bichri, A., Kamzon, M. A., Abderafi, S. Artificial neural network to predict the performance of the phosphoric acid production. Procedia Comput. Sci. 2020, 177, 444. https://doi.org/10.1016/j.procs.2020.10.060.Search in Google Scholar

5. Bichri, A., Kamzon, M. A., Abderafi, S. Modelling and optimization of P2O5 losses in phosphoric acid attack and filtration process. Mater. Today Proc. 2022, 51, 1998. https://doi.org/10.1016/j.matpr.2021.05.509.Search in Google Scholar

6. Ibrahim, S. A., Masoud, A. M., Taha, M. H., Meawad, A. S. New organic compounds detection and potential removal in crude phosphoric acid using waste sludge. Int. J. Environ. Anal. Chem. 2021. https://doi.org/10.1080/03067319.2021.1959564.Search in Google Scholar

7. Beltrami, D., Cote, G., Mokhtari, H., Courtaud, B., Moyer, B. A., Chagnes, A. Recovery of uranium from wet phosphoric acid by solvent extraction processes. Chem. Rev. 2014, 114, 12002. https://doi.org/10.1021/cr5001546.Search in Google Scholar PubMed

8. Ulrich, A. E., Schnug, E., Prasser, H. M., Frossard, E. Uranium endowments in phosphate rock. Sci. Total Environ. 2014, 478, 226. https://doi.org/10.1016/j.scitotenv.2014.01.069.Search in Google Scholar PubMed

9. Singh, D. K., Mondal, S., Chakravartty, J. K. Recovery of uranium from phosphoric acid: a review. Solvent Extr. Ion Exch. 2016, 34, 201. https://doi.org/10.1080/07366299.2016.1169142.Search in Google Scholar

10. Korany, K. A., Masoud, A. M., Rushdy, O. E., Alrowaili, Z. A., Hassanein, F. H., Taha, M. H. Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters. J. Radioanal. Nucl. Chem. 2021, 329, 391. https://doi.org/10.1007/s10967-021-07796-8.Search in Google Scholar

11. Charlot, A., Mourabit, S. El, Goettmann, F., ArrachartG, Turgis, R., Grandjean, A. From phosphate rocks to uranium raw materials: hybrid materials designed for selective separation of uranium from phosphoric acid. RSC Adv. 2014, 4, 64138. https://doi.org/10.1039/c4ra08703h.Search in Google Scholar

12. Taha, M. H. Sorption of U(VI), Mn (II), Cu(II), Zn(II), and Cd(II) from multi-component phosphoric acid solutions using MARATHON C resin. Environ. Sci. Pollut. Res. 2021, 28, 12475. https://doi.org/10.1007/s11356-020-11256-3.Search in Google Scholar PubMed

13. Elzoghby, A. A. Kinetic and equilibrium studies for U(VI) and Cd(II) sorption from commercial phosphoric acid using C100H resin. J. Radioanal. Nucl. Chem. 2021, 329, 899. https://doi.org/10.1007/s10967-021-07832-7.Search in Google Scholar

14. RoshdyO, E. Removal of uranium, cadmium and iron ions from phosphoric acid solution using Amberjet 1200 H resin: an experimental, isotherm and kinetic study. J. Radioanal. Nucl. Chem. 2021, 329, 85. https://doi.org/10.1007/s10967-021-07792-y.Search in Google Scholar

15. El-Hazek, N. T., El Sayed, M. S. Direct uranium extraction from dihydrate and hemi-dihydrate wet process phosphoric acids by liquid emulsion membrane. J. Radioanal. Nucl. Chem. 2003, 257, 347. https://doi.org/10.1023/a:1024740030940.10.1023/A:1024740030940Search in Google Scholar

16. Ali, H., Ali, M., Taha, M., Magied, A. A. Uranium extraction mechanism from analytical grade phosphoric acid using D2EHPA and synergistic D2EHPA-TOPO mixture. Int. J. Nucl. Energy Sci. Eng. 2012, 2, 57.Search in Google Scholar

17. Mousa, M. A., Gado, H. S., Abdelfattah, M. M. G., Madi, A. E., TahaRoshdy, M. H. O. E. Removal of uranium from crude phosphoric acid by precipitation technique. Arab J. Nucl. Sci. Appl. 2013, 46, 38.Search in Google Scholar

18. Aly, M. M., Mousa, M. A., Taha, M. H., Kandil, K. M., El-Zoghby, A. A. Kinetics and thermodynamics of uranium adsorption from commercial di-hydrate phosphoric acid using D2EHPA-impregnated charcoal. Arab J. Nucl. Sci. Appl. 2013, 46, 29.Search in Google Scholar

19. El-Maadawy, M. M. HDEHP-impregnated kaolinite for adsorption of uranium from dilute phosphoric acid. Radiochemistry 2019, 61, 331. https://doi.org/10.1134/s1066362219030081.Search in Google Scholar

20. Morshedy, A. S., Taha, M. H., El-Aty, D. M. A., Bakry, A., El Naggar, A. M. A. Solid waste sub-driven acidic mesoporous activated carbon structures for efficient uranium capture through the treatment of industrial phosphoric acid. Environ. Technol. Innovat. 2021, 21, 101363. https://doi.org/10.1016/j.eti.2021.101363.Search in Google Scholar

21. Abdel-Magied, A. F. Solid phase extraction of uranium from phosphoric acid: kinetic and thermodynamic study. Radiochim. Acta 2017, 105, 813. https://doi.org/10.1515/ract-2017-0001.Search in Google Scholar

22. Ali, M. M., Abedelmaksoud, S. A., Taha, M. H., El Naggar, A. M. A., Morshedy, A. S., Elzoghbi, A. A. Uranium separation from phosphoric acid using metallic carbonaceous structures as efficient adsorbents: an experimental and kinetic study. Radiochemistry 2020, 62, 204. https://doi.org/10.1134/s1066362220020083.Search in Google Scholar

23. Hussein, A. E. M., Morsy, A. M. A. Uranium recovery from wet-process phosphoric acid by a commercial ceramic product. Arab. J. Chem. 2017, 10, S361. https://doi.org/10.1016/j.arabjc.2012.09.007.Search in Google Scholar

24. Morsy, A., Taha, M. H., Saeed, M., Waseem, A., Riaz, M. A., Elmaadawy, M. M. Isothermal, kinetic, and thermodynamic studies for solid-phase extraction of uranium (VI) via hydrazine-impregnated carbon-based material as efficient adsorbent. Nucl. Sci. Tech. 2019, 30, 1. https://doi.org/10.1007/s41365-019-0686-z.Search in Google Scholar

25. Taha, M. H., El-Maadawy, M. M., Hussein, A. E. M., Youssef, W. M. Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. J. Radioanal. Nucl. Chem. 2018, 317, 685. https://doi.org/10.1007/s10967-018-5951-9.Search in Google Scholar

26. Reinoso-Maset, E., Ly, J. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. J. Environ. Radioact. 2016, 157, 136. https://doi.org/10.1016/j.jenvrad.2016.03.014.Search in Google Scholar PubMed

27. Hussain, S. T., Khaleefa Ali, S. A. Removal of heavy metal by ion exchange using bentonite clay. J. Ecol. Eng. 2021, 22, 104. https://doi.org/10.12911/22998993/128865.Search in Google Scholar

28. Zaher, A., Wahab, S. M., Taha, M. H., Masoud, A. M. Sorption characteristics of iron, fluoride and phosphate from wastewater of phosphate fertilizer plant using natural sodium bentonite. J. Membr. Sci. Technol. 2018, 8, 186.10.4172/2155-9589.1000186Search in Google Scholar

29. El-Korashy, S. A., Elwakeel, K. Z., El-Hafeiz, A. A. Fabrication of bentonite/thiourea-formaldehyde composite material for Pb(II), Mn(VII) and Cr(VI) sorption: a combined basic study and industrial application. J. Clean. Prod. 2016, 137, 40. https://doi.org/10.1016/j.jclepro.2016.07.073.Search in Google Scholar

30. Farag, N. M., El-Sayed, G. O., Morsy, A. M. A., Taha, M. H., Yousif, M. M. Modification of Davies & Gray method for uranium determination in phosphoric acid solutions. Int. J. Adv. Res. 2015, 12, 323.Search in Google Scholar

31. Gougazeh, M., Buhl, J.-C. Geochemical and mineralogical characterization of the Jabal Al-Harad kaolin deposit, southern Jordan, for its possible utilization. Clay Miner. 2010, 45, 301. https://doi.org/10.1180/claymin.2010.045.3.301.Search in Google Scholar

32. Masoud, A. M. Sorption behavior of uranium from sulfate media using Purolite A400 as a strong base anion exchange resin. Int. J. Environ. Anal. Chem. 2020. https://doi.org/10.1080/03067319.2020.1763974.Search in Google Scholar

33. Younes, A. A., Masoud, A. M., Taha, M. H. Uranium sorption from aqueous solutions using polyacrylamide-based chelating sorbents. Separ. Sci. Technol. 2018, 53, 2573. https://doi.org/10.1080/01496395.2018.1467450.Search in Google Scholar

34. Haggag, E. S. A. Cellulose hydrogel for enhanced uranium (VI) capture from nitrate medium: preparation, characterisation and adsorption optimisation. Int. J. Environ. Anal. Chem. 2021. https://doi.org/10.1080/03067319.2021.2005791.Search in Google Scholar

35. Haggag, E. S. A., Abdelsamad, A. A., Masou, A. M. Potentiality of uranium extraction from acidic leach liquor by polyacrylamide-acrylic acid titanium silicate composite adsorbent. Int. J. Environ. Anal. Chem. 2019, 100, 204. https://doi.org/10.1080/03067319.2019.1636037.Search in Google Scholar

36. Largitte, L., Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495. https://doi.org/10.1016/j.cherd.2016.02.006.Search in Google Scholar

37. Wu, F. C., Tseng, R. L., Juang, R. S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1. https://doi.org/10.1016/j.cej.2009.04.042.Search in Google Scholar

38. Kang, H. J., Kim, J. H. Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto Sylopute. Biotechnol. Bioproc. Eng. 2019, 24, 513. https://doi.org/10.1007/s12257-019-0001-1.Search in Google Scholar

39. Mahmoud, M. A., Gawad, E. A., Hamoda, E. A., Haggag, E. A. Kinetics and thermodynamic of Fe(III) adsorption type onto activated carbon from biomass: kinetics and thermodynamics studies. Environ. Sci. Indian J. 2020, 10.Search in Google Scholar

40. Al-Ghouti, M. A., Da’ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard Mater. 2020, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.Search in Google Scholar PubMed

41. Kim, Y. S., Isotherm, Kim J. H. Kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J. Chem. Thermodyn. 2019, 130, 104. https://doi.org/10.1016/j.jct.2018.10.005.Search in Google Scholar

42. Khawassek, Y. M., Eliwa, A. A., Haggag, E. S. A., Omar, S. A., Abdel-Wahab, S. M. Adsorption of rare earth elements by strong acid cation exchange resin thermodynamics, characteristics and kinetics. SN Appl. Sci. 2019, 1, 1. https://doi.org/10.1007/s42452-018-0051-6.Search in Google Scholar

43. El-Bayaa, A. A., Badawy, N. A., Gamal, A. M., Zidan, I. H., Mowafy, A. R. Purification of wet process phosphoric acid by decreasing iron and uranium using white silica sand. J. Hazard Mater. 2011, 190, 324. https://doi.org/10.1016/j.jhazmat.2011.03.037.Search in Google Scholar PubMed

44. Bromberg, L., Chen, R., Brown, P., Hatton, T. A. Magnetic lyogels for uranium recovery from wet phosphoric acid. Ind. Eng. Chem. Res. 2017, 56, 12644. https://doi.org/10.1021/acs.iecr.7b03462.Search in Google Scholar

45. Saha, P., Chowdhury, S. Insight into adsorption thermodynamics. In Thermodynamics; InTech: London, 2011.10.5772/13474Search in Google Scholar

Received: 2022-09-11
Accepted: 2022-10-19
Published Online: 2022-11-21
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0091/html
Scroll to top button