Startseite A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences

  • Yasuhito Igarashi EMAIL logo , Keiko Tagami ORCID logo , Koichi Takamiya und Atsushi Shinohara
Veröffentlicht/Copyright: 21. April 2022

Abstract

Many scientists who are members of the Japan Society of Nuclear and Radiochemical Sciences have been involved in academic activities in response to the Fukushima Daiichi Nuclear Power Plant accident. Projects had been implemented that include determining radionuclides in environmental samples, identifying the distribution of radionuclides by large-scale soil monitoring, tracing radionuclide discharge time series, clarifying environmental dynamics of radionuclides, etc. For the last 10 years, these results have been shared and discussed in annual workshops partly sponsored by the society. This review summarizes the studies yielding these results, and they include reconstruction of the 131I distribution on soil by long-lived 129I analysis, reconstruction of the radioactive plume transport, identification of biological resuspension sources, discovery and characterization of cesium particles, and parameterization of the environmental behavior of radiocesium for dose assessment.


Corresponding author: Yasuhito Igarashi, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi-2, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan, E-mail:

Acknowledgement

Ms. Mayumi Kitamura helped in editing the manuscript, and the authors thank her for this.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Komura, K., Yamamoto, M., Muroyama, T., Murata, Y., Nakanishi, T., Hoshi, M., Takada, J., Ishikawa, M., Takeoka, S., Kitagawa, K., Suga, S., Endo, S., Tosaki, N., Mitsugashira, T., Hara, M., Hashimoto, T., Takano, M., Yanagawa, Y., Tsuboi, T., Ichimasa, M., Ichimasa, Y., Imura, H., Sasajima, E., Seki, R., Saito, Y., Kondo, M., Kojima, S., Muramatsu, Y., Yoshida, S., Shibata, S., Yonehara, H., Watanabe, Y., Kimura, S., Shiraishi, K., Ban-nai, T., Sahoo, S. K., Igarashi, Y., Aoyama, M., Hirose, K., Uehiro, T., Doi, T., Tanaka, A., Matsuzawa, T. The JCO criticality accident at Tokai-mura, Japan: an overview of the sampling campaign and preliminary results. J. Environ. Radioact. 2000, 50, 3–14; https://doi.org/10.1016/s0265-931x(00)00054-0.Suche in Google Scholar

2. Tanaka, S.-I. Summary of the JCO criticality accident in Tokai-mura and a dose assessment. J. Radiat. Res. 2001, 42, S1–S9; https://doi.org/10.1269/jrr.42.s1.Suche in Google Scholar PubMed

3. Igarashi, Y., Kajino, M., Zaizen, Y., Adachi, K., Mikami, M. Atmospheric radioactivity over Tsukuba, Japan: a summary of three years of observations after the FDNPP accident. Prog. Earth Planet. Sci. 2015, 2, 44; https://doi.org/10.1186/s40645-015-0066-1.Suche in Google Scholar

4. Miyamoto, Y., Yasuda, K., Magara, M. Size distribution of radioactive particles collected at Tokai, Japan, six days after the nuclear accident. J. Environ. Radioact. 2014, 132, 1–7; https://doi.org/10.1016/j.jenvrad.2014.01.010.Suche in Google Scholar PubMed

5. Doi, T., Masumoto, K., Toyoda, A., Tanaka, A., Shibata, Y., Hirose, K. Anthropogenic radionuclides in the atmosphere observed at Tsukuba: characteristics of the radionuclides derived from Fukushima. J. Environ. Radioact. 2013, 122, 55–62; https://doi.org/10.1016/j.jenvrad.2013.02.001.Suche in Google Scholar PubMed

6. Uwamino, Y., Ishioka, J., Matsumura, H., Saito, K. Gamma survey in Fukushima prefecture right after the accident at Fukushima Nuclear Power Plant. Prog. Nucl. Sci. Technol. 2014, 4, 23–26; https://doi.org/10.15669/pnst.4.23.Suche in Google Scholar

7. Amano, H., Akiyama, M., Chunlei, B., Kawamura, T., Kishimoto, T., Kuroda, T., Muroi, T., Odaira, T., Ohta, Y., Takeda, K., Watanabe, Y., Morimoto, T. Radiation measurements in the Chiba Metropolitan area and radiological aspects of fallout from the Fukushima Dai-ichi Nuclear Power Plants accident. J. Environ. Radioact. 2012, 111, 42–52; https://doi.org/10.1016/j.jenvrad.2011.10.019.Suche in Google Scholar PubMed

8. Ishii, N., Tagami, K., Takata, H., Fujita, K., Kawaguchi, I., Watanabe, Y., Uchida, S. Deposition in Chiba Prefecture, Japan, of Fukushima Daiichi Nuclear Power Plant fallout. Health Phys. 2013, 104, 189–194; https://doi.org/10.1097/hp.0b013e3182764b1b.Suche in Google Scholar PubMed

9. Haba, H., Kanaya, J., Mukai, H., Kambara, T., Kase, M. One-year monitoring of airborne radionuclides in Wako, Japan, after the Fukushima Dai-ichi Nuclear Power Plant accident in 2011. Geochem. J. 2012, 46, 271–278; https://doi.org/10.2343/geochemj.2.0213.Suche in Google Scholar

10. Kokaji, L., Shinohara, N. Radiochemical verification technologies for the detection of nuclear explosions – recent developments in radionuclide monitoring with the Comprehensive Nuclear-Test-Ban Treaty. J. Nucl. Radiochem. Sci. 2014, 14, R1–R9; https://doi.org/10.14494/jnrs.14.r1.Suche in Google Scholar

11. Asai, M., Kaneya, Y., Sato, T. K., Ooe, K., Sato, N., Toyoshima, A. Efficiency calibration of Ge detector for 131I and 134Cs in soil samples and a simplified calculation of cascade summing corrections for volume source. J. Nucl. Radiochem. Sci. 2012, 12, 5–10; https://doi.org/10.14494/jnrs.12.5.Suche in Google Scholar

12. IAEA. Emergency Response Proficiency Test for Japanese Laboratories: Determination of Selected Radionuclides in Water, Soil, Vegetation and Aerosol Filters. (International Atomic Energy Agency, Vienna; 2013). IAEA/AQ/29; IAEA: Vienna, 2020.Suche in Google Scholar

13. Minai, Y., Iwamoto, H. Development of certified environmental reference materials for radioactivities, 2015. https://www.jst.go.jp/sentan/hyouka/h26jigo/4_26minai.html (accessed Jan 4, 2022).Suche in Google Scholar

14. Minai, Y., Miura, T., Yonezawa, C., Iwamoto, H., Shibukawa, M., Takagai, Y., Furukawa, M., Arakawa, F., Okada, Y., Kakita, K., Kojima, I., Hirai, S. Certified reference materials of agricultural products and foods bearing radioactivity from the Fukushima nuclear accident. J. Radioanal. Nucl. Chem. 2016, 307, 2421–2426; https://doi.org/10.1007/s10967-015-4445-2.Suche in Google Scholar

15. Miura, T., Minai, Y., Yonezawa, C., Kakita, K., Kojima, I., Okada, Y., Uematsu, Y., Okada, A., Hirai, S. Preparation and certification of certified reference materials of fish meat and ashed bone for determination of 90Sr and radiocesium after Fukushima Daiichi Nuclear Power Plant. J. Radioanal. Nucl. Chem. 2018, 318, 347–352; https://doi.org/10.1007/s10967-018-6028-5.Suche in Google Scholar

16. Miura, T., Hachinohe, M., Yunoki, A., Hamamatsu, S., Unno, Y. Validation of measurement comparability of NaI(Tl) scintillation detectors for radioactive cesium in brown rice sample by interlaboratory comparison. J. Radioanal. Nucl. Chem. 2020, 326, 1225–1231; https://doi.org/10.1007/s10967-020-07373-5.Suche in Google Scholar

17. Shinohara, A., Saito, T. “3. Japan Geoscience Union and Japan Society of Nuclear and Radiochemical Sciences Cooperative Project” in featured articles of “efforts related to the accident at the Fukushima Daiichi Nuclear Power Station. Housha Kagaku News (JNRS News J.) 2011, 24, 20–25 (in Japanese).Suche in Google Scholar

18. Shinohara, A. Fukushima Soil Project and JNRS Society Initiatives, proceedings of the 13th workshop on environmental radioactivity. KEK Proc. 2012, 2012-6, 25–33 (in Japanese).Suche in Google Scholar

19. Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, S., Otsuka, T., Onda, Y., Hoshi, M., Ikeuchi, Y., Takahashi, F., Kinouchi, N., Saegusa, J., Seki, A., Takemiya, H., Shibata, T. Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015, 139, 308–319; https://doi.org/10.1016/j.jenvrad.2014.02.014.Suche in Google Scholar PubMed

20. Sakaba, N. The launch of the project. Radioisotopes 2013, 62, 774–780; https://doi.org/10.3769/radioisotopes.62.774.Suche in Google Scholar

21. Kita, K., Kasahara, R., Watanabe, A., Tsuruta, H., Uematsu, M., Higaki, S., Yoshida, N., Toyoda, S., Yamada, K., Shinohara, A., Mikami, M., Igarashi, Y., Onda, Y., Sueki, K., Takigawa, M., Japan Geochemical Society of Japan = Japan Geosciences Union = Japan Society of Nuclear and Radiochemical Sciences Collaborative Emergency Sampling Team Atmosphere Research Group and Analysis Research Group: 2.2. “Wide-area observation of atmospheric radioactive materials and the effect of re-scattering from soil” in Kondo, H. Satomura, Y., Takemura, T., Yamazawa, H. and Watanabe, A. edits., 2011 Autumn Meeting Special Session “Current Status and Issues of Radiochemical Transport Models” report. Tenki 2012, 59, 240–241 (in Japanese).Suche in Google Scholar

22. Watanabe, A., Kajino, M., Ninomiya, K., Nagahashi, Y., Shinohara, A. Eight-year variations in atmospheric radiocesium in Fukushima city. Atmos. Chem. Phys. 2022, 22, 675–692; https://doi.org/10.5194/acp-22-675-2022.Suche in Google Scholar

23. Kinase, T., Kita, K., Igarashi, Y., Adachi, K., Ninomiya, K., Shinohara, A., Okochi, H., Ogata, H., Ishizuka, M., Toyoda, S., Yamada, K., Yoshida, N., Zaizen, Y., Mikami, M., Demizu, H., Onda, Y. The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan. Prog. Earth Planet. Sci. 2018, 5, 12; https://doi.org/10.1186/s40645-018-0171-z.Suche in Google Scholar

24. Igaraashi, Y. New academic area research (research area proposal type) “interdisciplinary research on the environmental dynamics of radionuclides released by the Fukushima nuclear accident and its rise. Housha Kagaku News (JNRS News J.) 2013, 27, 28–34 (in Japanese).Suche in Google Scholar

25. Onda, Y., Taniguchi, K., Yoshimura, K., Kato, H., Takahashi, J., Wakiyama, Y., Coppin, F., Smith, H. Radionuclides from the Fukushima Daiichi Nuclear Power Plant in terrestrial systems. Nat. Rev. Earth Environ. 2020, 1, 644–660; https://doi.org/10.1038/s43017-020-0099-x.Suche in Google Scholar

26. KEK News. “A place for research presentations and information sharing that makes it easy for various people to participate”-efforts of the “workshop on environmental radioactivity”, 2017. https://www.kek.jp/ja/newsroom/2017/12/15/1400/ (accessed Dec 27, 2021).Suche in Google Scholar

27. Workshop on Environmental Radioactivity. Summary of studies on environmental radioactivity effects from the accident at the TEPCO Fukushima Daiichi Nuclear Power Plant in the five years since the accident. KEK Rep. 2017, 2016-3 (in Japanese).Suche in Google Scholar

28. Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., Yoshida, S., Kubota, Y., Fuma, S., Ihara, S. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci. Rep. 2012, 2, 304; https://doi.org/10.1038/srep00304.Suche in Google Scholar PubMed PubMed Central

29. Zheng, J., Aono, T., Uchida, S., Zhang, J., Honda, M. C. Distribution of Pu isotopes in marine sediments in the Pacific 30 km off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident. Geochem. J. 2012, 46, 361–369; https://doi.org/10.2343/geochemj.2.0209.Suche in Google Scholar

30. Bu, W. T., Zheng, J., Aono, T., Wu, J. W., Tagami, K., Uchida, S., Guo, Q. J., Yamada, M. Pu distribution in seawater in the near coastal area off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident. J. Nucl. Radiochem. Sci. 2015, 15, 1–6; https://doi.org/10.14494/jnrs.15.1_1.Suche in Google Scholar

31. IAEA. The Fukushima Daiichi Accident, Technical Volume 4/5, “Radiological Consequences”. TI/PUB/1710; IAEA: Vienna, 2015.Suche in Google Scholar

32. Koarai, K., Kino, Y., Takahashi, A., Suzuki, T., Shimizu, Y., Chiba, M., Osaka, K., Sasaki, K., Fukuda, T., Isogai, E., Yamashiro, H., Oka, T., Sekine, T., Fukumoto, M., Shinoda, H. 90Sr in teeth of cattle abandoned in evacuation zone: record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident. Sci. Rep. 2016, 6, 24077; https://doi.org/10.1038/srep24077.Suche in Google Scholar PubMed PubMed Central

33. Zhang, Z., Ninomiya, K., Takahashi, N., Saito, T., Kita, K., Yamaguchi, Y., Shinohara, A. Rapid isolation method for radioactive Strontium using Empore™ Strontium Rad Disk. J. Nucl. Radiochem. Sci. 2016, 16, 15–21; https://doi.org/10.14494/jnrs.16.15.Suche in Google Scholar

34. Zhang, Z., Ninomiya, K., Yamaguchi, Y., Kita, K., Tsuruta, H., Igarashi, Y., Shinohara, A. Atmospheric activity concentration of 90Sr and 137Cs after the Fukushima Daiichi nuclear accident. Environ. Sci. Technol. 2018, 52, 9917–9925; https://doi.org/10.1021/acs.est.8b01697.Suche in Google Scholar PubMed

35. Tagami, K., Uchida, S., Ishii, N., Zheng, J. Estimation of Te-132 distribution in Fukushima prefecture at the early stage of the Fukushima Daiichi nuclear power plant reactor failures. Environ. Sci. Technol. 2013, 47, 5007–5012; https://doi.org/10.1021/es304730b.Suche in Google Scholar PubMed

36. Miyazawa, N., Uesugi, M., Yokoyama, A. Preparation of a carrier free 124Sb tracer produced in the Sn (p,n) reaction. Radiochim. Acta 2021, 109, 453–458; https://doi.org/10.1515/ract-2020-0105.Suche in Google Scholar

37. Muramatsu, Y. “4. Cooperation with Fukushima Prefecture related to the radioactive contamination problem of agricultural products”, in featured articles of “efforts related to the accident at the Fukushima Daiichi Nuclear Power Station”. Housha Kagaku News (JNRS News J.) 2011, 24, 25–27 (in Japanese).Suche in Google Scholar

38. Ohtsuki, T. “5. Radioactive material countermeasure test at Fukushima Prefectural Agricultural Research Center Fruit Tree Research Institute, etc., in featured articles of “efforts related to the accident at the Fukushima Daiichi Nuclear Power Station”. Housha Kagaku News (JNRS News J.) 2011, 24, 28 (in Japanese).Suche in Google Scholar

39. Takamiya, K. Featured article 4. JNRS Society Initiatives “Fukushima nuclear accident countermeasure project progress report”. Housha Kagaku News (JNRS News J.) 2012, 25, 36–38 (in Japanese).Suche in Google Scholar

40. Miyake, Y., Matsuzaki, H., Fujiwara, T., Saito, T., Yamagata, T., Honda, M., Muramatsu, Y. Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem. J. 2012, 46, 327–333; https://doi.org/10.2343/geochemj.2.0210.Suche in Google Scholar

41. Muramatsu, Y., Matsuzaki, H., Toyama, C., Ohno, T. Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). J. Environ. Radioact. 2015, 139, 344–350; https://doi.org/10.1016/j.jenvrad.2014.05.007.Suche in Google Scholar PubMed

42. Ebihara, M., Oura, Y., Shirai, N., Nagakawa, Y., Sakurai, N., Haba, H., Matsuzaki, H., Tsuruta, H., Moriguchi, Y. A new approach for reconstructing the 131I-spreading due to the 2011 Fukushima nuclear accident by means of measuring 129I in airborne particulate matter. J. Environ. Radioact. 2019, 208–209, 106000; https://doi.org/10.1016/j.jenvrad.2019.106000.Suche in Google Scholar PubMed

43. Oura, Y., Ebihara, M., Tsuruta, H., Nakajima, T., Ohara, T., Ishimoto, M., Sawahata, H., Katsumura, Y., Nitta, W. A database of hourly atmospheric concentrations of radiocesium (134Cs and 137Cs) in suspended particulate matter collected in March 2011 at 99 air pollution monitoring stations in Eastern Japan. J. Nucl. Radiochem. Sci. 2015, 15, 1–12; https://doi.org/10.14494/jnrs.15.2_1.Suche in Google Scholar

44. Tsuruta, H., Oura, Y., Ebihara, M., Moriguchi, Y., Ohara, T., Nakajima, T. Spatio-temporal distribution of atmospheric radiocesium in Eastern Japan just after the TEPCO Fukushima Daiichi Nuclear Power Plant accident—analysis of used filter-tapes of SPM monitors in air quality monitoring stations. Earozoru Kenkyu 2017, 32, 244–254 (in Japanese).Suche in Google Scholar

45. Igarashi, Y., Kita, K., Maki, T., Kinase, T., Hayashi, N., Hosaka, K., Adachi, K., Kajino, M., Ishizuka, M., Sekiyama, T. T., Zaizen, Y., Takenaka, C., Ninomiya, K., Okochi, H., Sorimachi, A. Fungal spore involvement in the resuspension of radiocaesium in summer. Sci. Rep. 2019, 9, 1954; https://doi.org/10.1038/s41598-018-37698-x.Suche in Google Scholar PubMed PubMed Central

46. Kita, K., Igarashi, Y., Kinase, T., Hayashi, N., Ishizuka, M., Adachi, K., Koitabashi, M., Sekiyama, T. T., Onda, Y. Rain-induced bioecological resuspension of radiocaesium in a polluted forest in Japan. Sci. Rep. 2020, 10, 15330; https://doi.org/10.1038/s41598-020-72029-z.Suche in Google Scholar PubMed PubMed Central

47. Kaneyasu, N., Ohashi, H., Suzuki, F., Okuda, T., Ikemori, F. Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ. Sci. Technol. 2012, 46, 5720–5726; https://doi.org/10.1021/es204667h.Suche in Google Scholar PubMed

48. Adachi, K., Kajino, M., Zaizen, Y., Igarashi, Y. Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep. 2013, 3, 2554; https://doi.org/10.1038/srep02554.Suche in Google Scholar PubMed PubMed Central

49. Abe, Y., Iizawa, Y., Terada, Y., Adachi, K., Igarashi, Y., Nakai, I. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem. 2014, 86, 8521–8525; https://doi.org/10.1021/ac501998d.Suche in Google Scholar PubMed

50. Satou, Y., Sueki, K., Sasa, K., Yoshikawa, H., Nakama, S., Minowa, H., Abe, Y., Nakai, I., Ono, T., Adachi, K., Igarashi, Y. Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem. J. 2018, 52, 137–143; https://doi.org/10.2343/geochemj.2.0514.Suche in Google Scholar

51. Yamaguchi, N., Kogure, T., Mukai, H., Kotone, A. H., Mitome, M., Hara, T., Fujiwara, H. Structures of radioactive Cs-bearing microparticles in non-spherical forms collected in Fukushima. Geochem. J. 2018, 52, 123–136; https://doi.org/10.2343/geochemj.2.0483.Suche in Google Scholar

52. Igarashi, J., Zheng, J., Zhang, Z., Ninomiya, K., Satou, Y., Fukuda, M., Ni, Y., Aono, T., Shinohara, A. First determination of Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident. Sci. Rep. 2019, 9, 11807; https://doi.org/10.1038/s41598-019-48210-4.Suche in Google Scholar PubMed PubMed Central

53. Higaki, S., Kurihara, Y., Yoshida, H., Takahashi, Y., Shinohara, N. Discovery of non-spherical heterogeneous radiocesium-bearing particles not derived from Unit 1 of the Fukushima Dai-ichi Nuclear Power Plant, in residences five years after the accident. J. Environ. Radioact. 2017, 177, 65–70; https://doi.org/10.1016/j.jenvrad.2017.06.006.Suche in Google Scholar PubMed

54. Igarashi, Y., Kogure, T., Kurihara, Y., Miura, H., Okumura, T., Satou, Y., Takahashi, Y., Yamaguchi, N. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-Ichi Nuclear Power Plant accident. J. Environ. Radioact. 2019, 205–206, 101–118; https://doi.org/10.1016/j.jenvrad.2019.04.011.Suche in Google Scholar PubMed

55. Higaki, S., Kurihara, Y., Takahashi, Y. Discovery of radiocesium-bearing particles in masks worn by members of the public in Fukushima in Spring 2013. Health Phys. 2020, 118, 656–663; https://doi.org/10.1097/hp.0000000000001148.Suche in Google Scholar PubMed

56. Fan, Q., Tanaka, K., Sakaguchi, A., Kondo, H., Watanabe, N., Takahashi, Y. Factors controlling radiocesium distribution in river sediments: field and laboratory studies after the Fukushima Dai-ichi Nuclear Power Plant accident. Appl. Geochem. 2014, 48, 93–103; https://doi.org/10.1016/j.apgeochem.2014.07.012.Suche in Google Scholar

57. Sakaguchi, A., Tanaka, K., Iwatani, H., Chiga, H., Fan, Q., Onda, Y., Takahashi, Y. Size distribution studies of 137Cs in river water in the Abukuma riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact. 2015, 139, 379–389; https://doi.org/10.1016/j.jenvrad.2014.05.011.Suche in Google Scholar PubMed

58. Takahashi, Y., Sakaguchi, A., Fan, Q., Tanaka, K., Miura, H., Kurihara, Y. In Book: Difference in the Solid-Water Distributions of Radiocesium in Rivers in Fukushima and Chernobyl; Kato, K. A. K., Kalmykov, S., Eds. Springer: Singapore, 2020; pp. 115–150.10.1007/978-981-15-0679-6_5Suche in Google Scholar

59. Miura, H., Ishimaru, T., Ito, Y., Kurihara, Y., Otosaka, S., Sakaguchi, A., Misumi, K., Tsumune, D., Kubo, A., Higaki, S., Kanda, J., Takahashi, Y. First isolation and analysis of caesium-bearing microparticles from marine samples in the Pacific coastal area near Fukushima Prefecture. Sci. Rep. 2021, 11, 5664; https://doi.org/10.1038/s41598-021-85085-w.Suche in Google Scholar PubMed PubMed Central

60. Suzuki, K., Watanabe, S., Yuasa, Y., Yamashita, Y., Arai, H., Tanaka, H., Kuge, T., Mori, M., Tsunoda, K. I., Nohara, S., Iwasaki, Y., Minai, Y., Okada, Y., Nagao, S. Radiocesium dynamics in the aquatic ecosystem of Lake Onuma on Mt. Akagi following the Fukushima Dai-ichi Nuclear Power Plant accident. Sci. Total Environ. 2018, 622–623, 1153–1164; https://doi.org/10.1016/j.scitotenv.2017.12.017.Suche in Google Scholar PubMed

61. Tagami, K., Ishii, N., Uchida, S. Obtaining concentration ratio of 137Cs in edible biota (excluding fish) in marine and freshwater environments by literature survey -comparison of concentration ratio data before and after the Fukushima Nuclear Power Plant accident-. Housha Kagaku 2019, 40, 3–13 (in Japanese).Suche in Google Scholar

62. IAEA. Environmental Transfer of Radionuclides in Japan Following the Accident at the Fukushima Daiichi Nuclear Power Plant.IAEA-TECDOC-1927; IAEA: Vienna, 2020.Suche in Google Scholar

63. Tagami, K. Use of environmental transfer data to understand the fates of radionuclides in the environments and the future. Radioisotopes 2019, 68, 805–814 (in Japanese); https://doi.org/10.3769/radioisotopes.68.805.Suche in Google Scholar

Received: 2022-01-27
Accepted: 2022-03-16
Published Online: 2022-04-21
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0019/pdf?lang=de
Button zum nach oben scrollen