Startseite Production of neutron deficient rare earth radionuclides by heavy ion activation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production of neutron deficient rare earth radionuclides by heavy ion activation

  • Nabanita Naskar und Susanta Lahiri EMAIL logo
Veröffentlicht/Copyright: 13. Mai 2022

Abstract

The attempts to produce neutron deficient radioisotopes of rare Earth elements by heavy ion activation are discussed in this review. The heavy ion induced reaction products have large atomic number difference with that of the target; therefore, radiochemical separation of no-carrier-added radio-lanthanides from the target matrix becomes easier. Heavy ion induced reactions also allow the production of rare Earth radionuclides from non-rare Earth target by tailor-made target-projectile combinations, and in those cases, radiochemical separations become even more easier. In general, the cross sections of heavy ion induced reactions are less than those of light charged particle induced reactions. However, some of the heavy ion induced reactions have comparable cross sections with those of light ion induced reactions. The range of heavy ions is also much smaller in the target matrix than that of lighter charged particles. These points hinder application of heavy ion induced reactions to produce radionuclides for nuclear medicine.


Corresponding author: Susanta Lahiri, Department of Physics, Sidho-Kanho-Birsha University, Ranchi Road, Purulia 723104, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70/71, 249–272.10.1524/ract.1995.7071.special-issue.249Suche in Google Scholar

2. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; https://doi.org/10.1007/s10967-018-6238-x.Suche in Google Scholar

3. Naskar, N., Lahiri, S. Theranostic terbium radioisotopes: challenges in production for clinical application. Front. Med. 2021, 08, 6750014; https://doi.org/10.3389/fmed.2021.675014.Suche in Google Scholar PubMed PubMed Central

4. Ditrói, F., Takács, S., Haba, H., Komori, Y., Aikawa, M., Szücs, Z., Saito, M. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn. Nucl. Instrum. Methods Phys. Res. B 2016, 385, 1–8.10.1016/j.nimb.2016.08.016Suche in Google Scholar

5. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266; https://doi.org/10.1007/s10967-019-06797-y.Suche in Google Scholar

6. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56.10.3390/ph10020056Suche in Google Scholar PubMed PubMed Central

7. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Suche in Google Scholar PubMed

8. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–302; https://doi.org/10.1524/ract.2001.89.4-5.297.Suche in Google Scholar

9. Lahiri, S., Maiti, M. Recent developments in nuclear data measurements and chemical separation methods in accelerator production of astatine and technetium radionuclides. Radiochim. Acta 2012, 100, 85–94; https://doi.org/10.1524/ract.2011.1888.Suche in Google Scholar

10. Stora, T. Isotopes for precision medicine. CERN Cour. 2018, 58, 29.Suche in Google Scholar

11. Lahiri, S. Across the energy scale – from eV to GeV. J. Radioanal. Nucl. Chem. 2016, 307, 1571–1586; https://doi.org/10.1007/s10967-015-4298-8.Suche in Google Scholar

12. NuDat 3.0. https://www.nndc.bnl.gov/nudat3/ (accessed Apr 01, 2022).Suche in Google Scholar

13. Schneider, J. D. Overview of High-Power CW Proton Accelerators. In Proceedings of 7th European Particle Accelerator Conference (EPAC 2000), Vienna, Austria, 2000.Suche in Google Scholar

14. Nayak, D., Lahiri, S. Application of radioisotopes in the field of nuclear medicine part I: lanthanide series elements. J. Radioanal. Nucl. Chem. 1999, 242, 423–432; https://doi.org/10.1007/bf02345573.Suche in Google Scholar

15. Lahiri, S., Nayak, D., Das, N. R. Studies on Liquid Liquid Extraction of Neodymium and Promethium with HDEHP. Book of Abstracts, 34th Annual Convention of Chemists; University of Delhi: India, 1997.Suche in Google Scholar

16. Lahiri, S., Nayak, D., Das, N. R. Studies of the Extraction Behavior of 169Yb from Proton Irradiated Thulium Target, Book of Abstracts, 16th Conference of Indian Council of Chemists; Mangalore University: India, 1997.Suche in Google Scholar

17. Lahiri, S., Nayak, D., Nandy, M., Das, N. R. Separation of carrier free lutetium produced in proton activated ytterbium with HDEHP. Appl. Radiat. Isot. 1998, 49, 911–913; https://doi.org/10.1016/s0969-8043(97)10101-4.Suche in Google Scholar

18. Steyn, G. F., Vermeulen, C., Szelecsenyi, F., Kovvacs, Z., Hohn, A., Van Der Meulen, N. P., Schibli, R., van der Walt, T. N. Cross-sections of proton-induced reactions on 152Gd, 155Gd and 159Tb with emphasis on the production of selected Tb radionuclides. Nucl. Instrum. Methods Phys. Res., Sect. B 2014, 319, 128–140; https://doi.org/10.1016/j.nimb.2013.11.013.Suche in Google Scholar

19. TRACE Sciences International. https://www.tracesciences.com/gd.htm (accessed Apr 01, 2022).Suche in Google Scholar

20. National Isotope Development Centre. https://www.isotopes.gov/products/Gadolinium (accessed Apr 01, 2022).Suche in Google Scholar

21. Alexander, J. M., Simonoff, G. N. Excitation functions for 149gTb from reactions between complex nuclei. Phys. Rev. 1963, 130, 2383–2387; https://doi.org/10.1103/physrev.130.2383.Suche in Google Scholar

22. Kossakowski, R., Jastrzebski, J., Rymuza, P., Skulski, W., Gizon, A., André, S., Genevey, J., Gizon, J., Barci, V. Heavy residues following 5-10 MeV/nucleon 12C and 14N induced reactions on Sm and Pr targets. Phys. Rev. C 1985, 32, 1612–1630; https://doi.org/10.1103/physrevc.32.1612.Suche in Google Scholar PubMed

23. Singh, D., Linda, S. B., Giri, P. K., Mahato, A., Tripathi, R., Kumar, H., Tali, S. A., Parashari, S., Ali, A., Dubey, R., Ansari, M. A., Kumar, R., Muralithar, S., Singh, R. P. Measurement of excitation functions of evaporation residues in the 16O+124Sn reaction and investigation of the dependence of incomplete fusion dynamics on entrance channel parameters. Phys. Rev. C 2018, 97, 064610; https://doi.org/10.1103/physrevc.97.064610.Suche in Google Scholar

24. Sharma, M. K., Sing, B. P., Gupta, S., Musthafa, M. M., Bhardwaj, H. D., Prasad, R. K., Sinha, A. Complete and incomplete fusion: measurement and analysis of excitation functions in 12C+128Te system at energies near and above the Coulomb barrier. J. Phys. Soc. Jpn. 2003, 72, 1917–1925; https://doi.org/10.1143/jpsj.72.1917.Suche in Google Scholar

25. Stokstad, R. G., DiGregorio, D. E., Lesko, K. T., Harmon, B. A., Norman, E. B., Pouliot, J., Chan, Y. D. Observation of a constant average angular momentum for fusion at sub-barrier energies. Phys. Rev. Lett. 1989, 62, 399–402; https://doi.org/10.1103/physrevlett.62.399.Suche in Google Scholar PubMed

26. DiGregorio, D. E., Lesko, K. T., Harmon, B. A., Norman, E. B., Pouliot, J., Sur, B., Chan, Y., Stokstad, R. G. Angular momentum in sub-barrier fusion: experimental study using the isomer ratio 137Cem/137Ceg. Phys. Rev. C 1990, 42, 2108–2124; https://doi.org/10.1103/physrevc.42.2108.Suche in Google Scholar PubMed

27. Sharma, M. K., Singh, P. P., Singh, D. P., Yadav, A., Sharma, V. R., Bala, I., Kumar, R., Singh, B. P., Prasad, R. Systematic study of pre-equilibrium emission at low energies in C12-and O16-induced reactions. Phys. Rev. C 2015, 91, 014603; https://doi.org/10.1103/physrevc.91.014603.Suche in Google Scholar

28. Singh, D. P., Sharma, V. R., Yadav, A., Singh, P. P., Sharma, M. K., Kumar, R., Singh, B. P., Prasad, R. Experimental study of incomplete fusion reactions in the O16+Te130 system below 6 MeV/nucleon. Phys. Rev. C 2014, 89, 024612; https://doi.org/10.1103/physrevc.89.024612.Suche in Google Scholar

29. Unnati Sharma, M. K., Singh, B. P., Prasad, R., Gupta, S., Bhardwaj, H. D., Sinha, A. K. A study of excitation functions for some residues produced in the system 14N+128Te in the energy range≈ 64–90 MeV. Int. J. Mod. Phys. E 2005, 14, 775–786; https://doi.org/10.1142/s0218301305003545.Suche in Google Scholar

30. Maiti, M. New measurement of cross sections of evaporation residues from the natPr+12C reaction: a comparative study on the production of 149Tb. Phys. Rev. C 2011, 84, 044615; https://doi.org/10.1103/physrevc.84.044615.Suche in Google Scholar

31. Rath, P. K., Santra, S., Singh, N. L., Nayak, B. K., Mahata, K., Palit, R., Ramachandran, K., Pandit, S. K., Parihari, A., Pal, A., Appannababu, S., Sharma, S. K., Patel, D., Kailas, S. Complete fusion in 7Li+144,152Sm reactions. Phys. Rev. C 2013, 88, 044617; https://doi.org/10.1103/physrevc.88.044617.Suche in Google Scholar

32. Beyer, G.-J., Čomor, J. J., Daković, M., Soloviev, D., Tamburella, C., Hagebø, E., Allan, B., Dmitriev, S. N., Zaitseva, N. G., Starodub, G. Y., Molokanova, L. G., Vranješ, S., Miederer, M. The ISOLDE Collaboration. Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta 2002, 90, 247–252; https://doi.org/10.1524/ract.2002.90.5_2002.247.Suche in Google Scholar

33. Jungclaus, A., Binder, B., Dietrich, A., Härtlein, T., Bauer, H., Gund, Ch., Pansegrau, D., Schwalm, D., Egido, J. L., Sun, Y., Bazzacco, D., de Angelis, G., Farnea, E., Gadea, A., Lunardi, S., Napoli, D. R., Rossi-Alvarez, C., Ur, C., Hagemann, G. B. Backbending region study in Dy-160,162 using incomplete fusion reactions. Phys. Rev. C 2002, 66, 014312; https://doi.org/10.1103/physrevc.66.014312.Suche in Google Scholar

34. Singh, P. P., Singh, B. P., Sharma, M. K., Singh, D. P., Prasad, R., Kumar, R., Golda, K. S. Influence of incomplete fusion on complete fusion: observation of a large incomplete fusion fraction at E≈ 5− 7 MeV/nucleon. Phys. Rev. C 2008, 77, 014607; https://doi.org/10.1103/physrevc.77.014607.Suche in Google Scholar

35. Sharma, M. K., Singh, B. P., Kumar, R., Golda, K. S., Bhardwaj, H. D., Prasad, R. A study of the reactions occurring in 16O+159Tb system: measurement of excitation functions and recoil range distributions. Nucl. Phys. A 2006, 776, 83–104; https://doi.org/10.1016/j.nuclphysa.2006.06.171.Suche in Google Scholar

36. Lahiri, S., Nayak, D., Das, S. K., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier free dysprosium and terbium isotopes from 12C6+ irradiated Nd2O3. Appl. Radiat. Isot. 1999, 51, 27–32; https://doi.org/10.1016/s0969-8043(98)00189-4.Suche in Google Scholar

37. Lahiri, S., Nayak, D., Das, S. K., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier free 152,153Dy and 151-153Tb from 16O7+ irradiated CeO2 by liquid-liquid extraction. J. Radioanal. Nucl. Chem. 1999, 241, 201–206; https://doi.org/10.1007/bf02347313.Suche in Google Scholar

38. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier free 151,152Tb produced in 16O6+ irradiated lanthanum oxide matrix. Appl. Radiat. Isot. 1999, 51, 631–636; https://doi.org/10.1016/s0969-8043(99)00106-2.Suche in Google Scholar

39. Gavron, A. Statistical model calculations in heavy ion reactions. Phys. Rev. C 1980, 21, 230–236; https://doi.org/10.1103/physrevc.21.230.Suche in Google Scholar

40. Tarasov, O. B., Bazin, D. Development of the program LISE: application to fusion–evaporation. Nucl. Instrum. Methods B 2003, 204, 174–178; https://doi.org/10.1016/s0168-583x(02)01917-1.Suche in Google Scholar

41. Maiti, M., Lahiri, S., Tomar, B. S. Investigation on the production and isolation of 149,150,151Tb from 12C irradiated natural praseodymium target. Radiochim. Acta 2011, 99, 527–533; https://doi.org/10.1524/ract.2011.1839.Suche in Google Scholar

42. Maiti, M., Lahiri, S., Tomar, B. S. Separation of no-carrier-added 149Gd from 12C activated natural praseodymium matrix. J. Radioanal. Nucl. Chem. 2012, 291, 427–432; https://doi.org/10.1007/s10967-011-1195-7.Suche in Google Scholar

43. Wilkinson, J. T., Barrett, K. E., Ferran, S. J., McGuinness, S. R., McIntosh, L. A., McCarthy, M., Yennello, S. J., Engle, J. W., Lapi, S. E., Peaslee, G. F. A heavy-ion production channel of 149Tb via 63Cu bombardment of 89Y. Appl. Radiat. Isot. 2021, 178, 109935; https://doi.org/10.1016/j.apradiso.2021.109935.Suche in Google Scholar

44. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B. Separation of carrier-free 163,165Tm produced in 80 MeV 16O irradiated Eu2O3 target Matrix. Radiochim. Acta 1999, 87, 75–78; https://doi.org/10.1524/ract.1999.87.12.75.Suche in Google Scholar

45. Qaim, S. M., Wu, C. H., Woelfle, R. He-3 particle emission in fast neutron induced reactions. Nucl. Phys. Sect. A 1983, 410, 421–428; https://doi.org/10.1016/0375-9474(83)90634-6.Suche in Google Scholar

46. Nayak, D., Lahiri, S. Separation of carrier-free cerium radionuclides from different target matrix produced by heavy ion beams. Radiochim. Acta 2000, 88, 115–119; https://doi.org/10.1524/ract.2000.88.2.115.Suche in Google Scholar

47. Lahiri, S., Nayak, D., Das, N. R. Production and separation of carrier-free 145,146Eu from a CsNO3 target using a 16O Beam. Appl. Radiat. Isot. 2000, 52, 1393–1397; https://doi.org/10.1016/s0969-8043(99)00166-9.Suche in Google Scholar

48. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B., Das, N. R. Production and separation of carrier-free 146,147Eu from a 12C6+ irradiated La2O3 matrix. Appl. Radiat. Isot. 1999, 51, 261–268; https://doi.org/10.1016/s0969-8043(99)00048-2.Suche in Google Scholar

49. Waheed, S., Zaidi, J. H., Ahmad, S., Saleem, M. Measurement of fission neutron spectrum averaged cross sections of some threshold reactions on dysprosium: small-scale production of no-carrier-added 153Gd in a nuclear reactor. Radiochim. Acta 2002, 90, 443–446; https://doi.org/10.1524/ract.2002.90.8_2002.443.Suche in Google Scholar

50. Nayak, D., Lahiri, S., Das, S. K., Ramaswami, A., Manohor, S. B., Das, N. R. Separation of carrier-free gadolinium produced in an 80 MeV 12C6+ irradiated CeO2 target. Appl. Radiat. Isot. 1999, 51, 1–7; https://doi.org/10.1016/s0969-8043(98)00176-6.Suche in Google Scholar

51. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B. Separation of carrier-free holmium and dysprosium produced in 70 MeV 11B5+ irradiated europium target by liquid-Liquid extraction with HDEHP. Indian J. Chem. 2000, 39A, 1061–1065.Suche in Google Scholar

52. Homma, Y., Sugitani, Y., Matsui, Y., Matsuura, K., Kurata, K. Cyclotron production of 167Tm from natural erbium and natural holmium. Int. J. Appl. Radiat. Isot. 1989, 31, 505–508.10.1016/0020-708X(80)90314-2Suche in Google Scholar

53. Tárkányi, F., Hermanne, A., Takács, S., Ditrói, F., Spahn, I., Kovalev, S. F., Ignatyuk, A. V., Qaim, S. M. Activation cross sections of the 169Tm(d,2n) reaction for production of the therapeutic radionuclide 169Yb. Appl. Radiat. Isot. 2007, 65, 663–668.10.1016/j.apradiso.2007.01.008Suche in Google Scholar

54. Lahiri, S., Nayak, D., Ramaswami, A., Manohor, S. B. Separation of carrier-free ytterbium and thulium produced in 80 MeV 12C6+ irradiated gadolinium foil target by liquid-liquid extraction with HDEHP. Appl. Radiat. Isot. 2000, 52, 797–802; https://doi.org/10.1016/s0969-8043(99)00135-9.Suche in Google Scholar

55. Lahiri, S., Nayak, D., Ramaswami, A., Manohor, S. B. Production and separation of carrier-free lutetium, ytterbium and thulium radionuclides from 75 MeV 12C6+ irradiated terbium foil target. J. Radioanal. Nucl. Chem. 2000, 243, 701–705.10.1023/A:1010674420648Suche in Google Scholar

56. Gupta, S., Singh, B. P., Musthafa, M. M., Bhardwaj, H. D., Prasad, R. Complete and incomplete fusion of 12C with 165Ho below 7 MeV/nucleon: measurements and analysis of excitation functions. Phys. Rev. C 2000, 61, 064613; https://doi.org/10.1103/physrevc.61.064613.Suche in Google Scholar

57. Lahiri, S., Banerjee, K., Nayak, D., Ramaswami, A., Das, N. R. Separation of carrier free hafnium and lutetium radionuclides produced in 16O activated terbium metal target. Appl. Radiat. Isot. 2000, 52, 1399–1405; https://doi.org/10.1016/s0969-8043(99)00167-0.Suche in Google Scholar

58. Blann, M. Hybrid model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett. 1971, 27, 337–340; https://doi.org/10.1103/physrevlett.27.337.Suche in Google Scholar

59. Barashenkov, V. S., Konobeev, A. Y., Korovin, Y. A., Sosnin, V. N. CASCADE/INPE code system. At. Energy 1999, 87, 742–744; https://doi.org/10.1007/bf02673263.Suche in Google Scholar

60. Sood, A., Singh, P. P., Sahoo, R. N., Kumar, P., Yadav, A., Sharma, V. R., Shuaib, M., Sharma, M. K., Singh, D. P., Gupta, U., Kumar, R., Aydin, S., Singh, B. P., Wollersheim, H. J., Prasad, R. Fission-like events in the 12C+169Tm system at low excitation energies. Phys. Rev. C 2017, 96, 014620; https://doi.org/10.1103/physrevc.96.014620.Suche in Google Scholar

61. Nayak, D., Lahiri, S., Ramaswami, A., Manohor, S. B. Separation of no-carrier-added 147,149Gd and 147Eu produced in 70 MeV 11B irradiated praseodymium foil target. Radiochim. Acta 1999, 87, 93–96; https://doi.org/10.1524/ract.1999.87.34.93.Suche in Google Scholar

62. Zychor, I., Rykaczewski, K., Kurcewicz, W., Ahrens, H., Folger, H., Kaffrell, K., Trautmann, N. Hafnium and lutetium isotopes produced in heavy-ion collisions of 7.6 MeV/u 40Ar, 8.5 MeV/u 84Kr and 8.5 MeV/u 136Xe on tungsten targets. Nucl. Phys. 1984, A414, 301–308; https://doi.org/10.1016/0375-9474(84)90646-8.Suche in Google Scholar

63. Greenwood, N. N., Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, 1989.Suche in Google Scholar

64. Das, N. R., Lahiri, S. Liquid ion exchangers and their uses in the separation of zirconium, niobium, molybdenum, hafnium, tantalum and tungsten. Solvent Extr. Ion Exch. 1991, 9, 337–381; https://doi.org/10.1080/07366299108918059.Suche in Google Scholar

65. Maiti, M., Lahiri, S. Theoretical approach to explore the production routes of astatine radionuclides. Phys. Rev. C 2009, 79, 024611; https://doi.org/10.1103/physrevc.79.024611.Suche in Google Scholar

66. Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655–2715; https://doi.org/10.1016/j.nds.2007.11.003.Suche in Google Scholar

67. Gastaldo, L., Blaum, K., Chrysalidis, K., Goodacre, T. D., Domula, A., Door, M., Dorrer, H., Düllmann, Ch. E., Eberhardt, K., Eliseev, S., Enss, C., Faessler, A., Filianin, P., Fleischmann, A., Fonnesu, D., Gamer, L., Haas, R., Hassel, C., Hengstler, D., Jochum, J., Johnston, K., Kebschull, U., Kempf, S., Kieck, T., Köster, U., Lahiri, S., Maiti, M., Mantegazzini, F., Marsh, B., Neroutsos, P., Novikov, Yu. N., Ranitzsch, P. C. O., Rothe, S., Rischka, A., Saenz, A., Sander, O., Schneider, F., Scholl, S., Schüssler, R. X., Schweiger, Ch., Simkovic, F., Stora, T., Szücs, Z., Türler, A., Veinhard, M., Weber, M., Wegner, M., Wendt, K., Zuber, K. The electron capture in 163Ho experiment – ECHo. Eur. Phys. J. Spec. Top. 2017, 226, 1623–1694; https://doi.org/10.1140/epjst/e2017-70071-y.Suche in Google Scholar

68. Eliseev, S. A., Novikov, Yu. N., Blaum, K. Search for resonant enhancement of neutrinoless double-electron capture by high-precision Penning-trap mass spectrometry. J. Phys. G Nucl. Part. Phys. 2012, 39, 124003; https://doi.org/10.1088/0954-3899/39/12/124003.Suche in Google Scholar

69. Pagliaroli, G., Rossi-Torres, F., Vissani, F. Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission. Astropart. Phys. 2010, 33, 287–291; https://doi.org/10.1016/j.astropartphys.2010.02.007.Suche in Google Scholar

70. Šimkovic, F., Faessler, A., Rodin, V., Vogel, P., Engel, J. Anatomy of the 0νββ nuclear matrix elements. Phys. Rev. C 2008, 77, 045503.10.1103/PhysRevC.77.045503Suche in Google Scholar

Received: 2022-01-23
Accepted: 2022-04-28
Published Online: 2022-05-13
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0018/pdf?lang=de
Button zum nach oben scrollen