Startseite Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies

  • Parveen K. Verma und Prasanta K. Mohapatra EMAIL logo
Veröffentlicht/Copyright: 9. Mai 2022

Abstract

Neptunium, with a half life of 2.14 million years is one of the most notorious activation products in the nuclear fuel cycle. It has been more than 5 decades in the reprocessing of nuclear fuels by the well documented PUREX process, but the fate of Np in the PUREX cycle is still not well controlled. Although Np being stable in its pentavalent state in low acid media, its starts to undergo disproportionation at higher acidities. This disproportionation along with the oxidizing conditions of the HNO3 medium makes Np to exits as Np(IV), Np(V) and Np(VI) in the dissolver solution. The overall extractability of Np in the co-decontamination step of the PUREX cycle is dependent on its oxidation state in the medium as Np(VI) and Np(IV) being extractable while Np(V) being least extractable. The present review article discusses about the speciation of Np in HNO3 and its disproportionation. The variety of redox reagents are discussed for their effectiveness towards controlling Np redox behavior in the HNO3 media. The extraction of Np with the different class of extractant has also been discussed and the results are compared for better understanding. Solid phase extraction of Np using both commercially available resin and lab based synthesized resins were discussed. The anion exchange resins with the different cationic centers were shown to behave differently towards the uptake of Np form the acidic medium. The present review also highlight the chemical conditions required for controlling or minimizing the fate of Np in different process streams of the nuclear fuel cycle.


Corresponding author: Prasanta K. Mohapatra, Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India, E-mail:

Acknowledgement

The authors thank Dr. S. Kannan, Group Director, Radiochemistry & Isotope Group for his keen interest.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Burney, G., Harbour, R. Radiochemistry of Neptunium; Savannah River Lab, Du Pont de Nemours (EI) and Co: Aiken, SC (USA), 1974.Suche in Google Scholar

2. Yoshida, Z., Johnson, S. G., Kimura, T., Krsul, J. R. Neptunium. In The Chemistry of the Actinide and Transactinide Elements; Springer: Dordrecht, 2008; p. 699.10.1007/1-4020-3598-5_6Suche in Google Scholar

3. Kobayashi, Y., Saito, A. The extraction of thorium, neptunium, plutonium and americium with sodium amalgam from aqueous solution. J. Inorg. Nucl. Chem. 1973, 35, 3605, https://doi.org/10.1016/0022-1902(73)80371-9.Suche in Google Scholar

4. Kolarik, Z. J., Horwitz, E. P. Extraction of neptunium and plutonium nitrates with n-octyl(phenyl)-N, N-Diisobutyl-Carbamoylmethylphosphine oxide. Solvent Extr. Ion Exch. 1988, 6, 247, https://doi.org/10.1080/07366298808917935.Suche in Google Scholar

5. Mathur, J. N., Murali, M. S., Balarama Krishna, M. V., Iyer, R. H., Chitnis, R. R., Wattal, P. K., Bauri, A., Banerji, A. Recovery of neptunium from highly radioactive waste solutions of purex origin using CMPO. J. Radioanal. Nucl. Chem. 1996, 213, 419; https://doi.org/10.1007/bf02162221.Suche in Google Scholar

6. Mathur, J. N., Murali, M. S., Balarama Krishna, M. V., Iyer, R. H., Chitnis, R. R., Wattal, P. K., Theyyunni, T. K., Ramanujam, A., Dhami, P. S., Gopalakrishnan, V. Recovery of neptunium from highly radioactive waste solutions of purex origin using tributyl phosphate. Separ. Sci. Technol. 1996, 31, 2045; https://doi.org/10.1080/01496399608001030.Suche in Google Scholar

7. Taylor, R. J., May, I., Koltunov, V. S., Baranov, S. M., Marchenko, V. I., Mezhov, E. A., Pastuschak, V. G., Zhuravleva, G. I., Savilova, O. A. Kinetic and solvent extraction studies of the selective reduction of Np(VI) by new salt-free reducing agents. Radiochim. Acta 1998, 81, 149; https://doi.org/10.1524/ract.1998.81.3.149.Suche in Google Scholar

8. Taylor, R. J., Sinkov, S. I., Choppin, G. R., May, I. Solvent extraction behavior of neptunium (IV) ions between nitric acid and diluted 30% tri-butyl phosphate in the presence of simple hydroxamic acids. Solvent Extr. Ion Exch. 2008, 26, 41.10.1080/07366290701784159Suche in Google Scholar

9. Srinivasan, N., Ramaniah, M., Patil, S., Ramakrishna, V. Estimation of neptunium in a fuel reprocessing plant. J. Radioanal. Chem. 1971, 8, 223, https://doi.org/10.1007/bf02518186.Suche in Google Scholar

10. Kolarik, Z., Schuler, R. Process for Separating Neptunium from an Organic Phase in the Reprocessing of Spent Nuclear Fuels and/or Fertile Materials; Deutsches  Patentamt: Germersheim, 1985.Suche in Google Scholar

11. Osváth, S., Vajda, N., Stefánka, Z., Széles, É., Molnár, Z. Determination of 93Zr and 237Np in nuclear power plant wastes. J. Radioanal. Nucl. Chem. 2011, 287, 459.10.1007/s10967-010-0886-9Suche in Google Scholar

12. Gilson, S. E., Burns, P. C. The crystal and coordination chemistry of neptunium in all its oxidation states: an expanded structural hierarchy of neptunium compounds. Coord. Chem. Rev. 2021, 445, 213994, https://doi.org/10.1016/j.ccr.2021.213994.Suche in Google Scholar

13. Polinski, M. J., Burns, P. C., Albrecht-Schmitt, T. Transuranium inorganic chemistry. In Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications, Vol. 2, 2013; p. 601.10.1016/B978-0-08-097774-4.00226-6Suche in Google Scholar

14. Geckeis, H., Lützenkirchen, J., Polly, R., Rabung, T., Schmidt, M. Mineral–water interface reactions of actinides. Chem. Rev. 2013, 113, 1016, https://doi.org/10.1021/cr300370h.Suche in Google Scholar PubMed

15. Silva, R., Nitsche, H. Actinide environmental chemistry. Radiochim. Acta 1995, 70, 377, https://doi.org/10.1524/ract.1995.7071.s1.377.Suche in Google Scholar

16. Maher, K., Bargar, J. R., Brown, G. E.Jr. Environmental speciation of actinides. Inorg. Chem. 2013, 52, 3510, https://doi.org/10.1021/ic301686d.Suche in Google Scholar PubMed

17. Hindman, J., Sullivan, J., Cohen, D. The effect of deuterium on the kinetics of reactions involving neptunium (IV),(V) and (VI) Ions1. J. Am. Chem. Soc. 1959, 81, 2316, https://doi.org/10.1021/ja01519a009.Suche in Google Scholar

18. Steele, H., Taylor, R. J. A theoretical study of the inner-sphere disproportionation reaction mechanism of the pentavalent actinyl ions. Inorg. Chem. 2007, 46, 6311, https://doi.org/10.1021/ic070235c.Suche in Google Scholar PubMed

19. Clark, D. L., Hobart, D. E., Neu, M. P. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev. 1995, 95, 25, https://doi.org/10.1021/cr00033a002.Suche in Google Scholar

20. Kato, C. Corrosion in nuclear fuel reprocessing plants: corrosion in boiling nitric acid. In Comprehensive Nuclear Materials; Elsevier, 2020; p. 528. eBook ISBN: 9780081028667.10.1016/B978-0-12-803581-8.11628-5Suche in Google Scholar

21. Ikeda-Ohno, A., Hennig, C., Rossberg, A., Funke, H., Scheinost, A. C., Bernhard, G., Tsuyoshi, Y. Electrochemical and complexation behavior of neptunium in aqueous perchlorate and nitrate solutions. Inorg. Chem. 2008, 47, 8294; https://doi.org/10.1021/ic8009095.Suche in Google Scholar PubMed

22. Chatterjee, S., Bryan, S. A., Casella, A. J., Peterson, J. M., Levitskaia, T. G. Mechanisms of neptunium redox reactions in nitric acid solutions. Inorg. Chem. Front. 2017, 4, 581, https://doi.org/10.1039/c6qi00550k.Suche in Google Scholar

23. Siddall, T.III, Dukes, E. Kinetics of HNO2 catalyzed oxidation of neptunium (V) by aqueous solutions of nitric Acid1. J. Am. Chem. Soc. 1959, 81, 790, https://doi.org/10.1021/ja01513a007.Suche in Google Scholar

24. Precek, M., Paulenova, A. Kinetics of reduction of hexavalent neptunium by nitrous acid in solutions of nitric acid. J. Radioanal. Nucl. Chem. 2010, 286, 771, https://doi.org/10.1007/s10967-010-0724-0.Suche in Google Scholar

25. Matteson, B. S., Precek, M., Paulenova, A. A study of the kinetics of the reduction of neptunium (VI) by acetohydroxamic acid in perchloric acid. IOP Conf. Ser.: Mater. Sci. Eng., 2010, 9, 012073, https://doi.org/10.1088/1757-899x/9/1/012073.Suche in Google Scholar

26. Tochiyama, O., Nakamura, Y., Hirota, M., Inoue, Y. Kinetics of nitrous acid-catalyzed oxidation of neptunium in nitric acid-TBP extraction system. J. Nucl. Sci. Technol. 1995, 32, 118, https://doi.org/10.1080/18811248.1995.9731681.Suche in Google Scholar

27. Tochiyama, O., Nakamura, Y., Katayama, Y., Inoue, Y. Equilibrium of nitrous acid-catalyzed oxidation of neptunium in nitric acid-TBP extraction system. J. Nucl. Sci. Technol. 1995, 32, 50, https://doi.org/10.1080/18811248.1995.9731668.Suche in Google Scholar

28. Gregson, C., Boxall, C., Carrott, M., Edwards, S., Sarsfield, M., Taylor, R., Woodhead, D. Neptunium (V) oxidation by nitrous acid in nitric acid. Procedia Chem. 2012, 7, 398; https://doi.org/10.1016/j.proche.2012.10.062.Suche in Google Scholar

29. Kim, S.-Y., Asakura, T., Morita, Y., Uchiyama, G., Ikeda, Y. Electrochemical and spectroelectrochemical properties of neptunium (VI) ions in nitric acid solution. J. Radioanal. Nucl. Chem. 2004, 262, 311, https://doi.org/10.1023/b:jrnc.0000046758.48775.a0.10.1023/B:JRNC.0000046758.48775.a0Suche in Google Scholar

30. Groh, H. J., Poe, W. L., Porter, J. A. Development and performance of processes and equipment to recover neptunium-237 and plutonium-238. In Prepared for the US Department of Energy under Contract No. DE-ACO9-96SR18500. Westinghouse Savannah River Company Savannah River Site: Aiken, 2000; p. 165.Suche in Google Scholar

31. Yamana, H., Yamamoto, T., Kobayashi, K., Mitsugashira, T., Moriyama, H. Production of pure 236Pu tracer for the assessment of plutonium in the environment. J. Nucl. Sci. Technol. 2001, 38, 859, https://doi.org/10.3327/jnst.38.859.Suche in Google Scholar

32. Aaltonen, J., Gromova, E., Helariutta, K., Jakovlev, V., Trzaska, W., Huikari, J., Kolhinen, V. S., Rinta-Antila, S. Production of 234,235 Np and 236Pu in bombardment of 236U with protons in the energy range from 17 to 40 MeV. Radiochim. Acta 2005, 93, 377; https://doi.org/10.1524/ract.2005.93.7.377.Suche in Google Scholar

33. Bellido, L. F., Robinson, V. J., Sims, H. E. Production of 235Np and 236Pu for environmental applications. Radiochim. Acta 1994, 64, 11, https://doi.org/10.1524/ract.1994.64.1.11.Suche in Google Scholar

34. Koltunov, V., Taylor, R., Marchenko, V., Savilova, O., Dvoeglazov, K., Zhuravleva, G. Kinetics and mechanism of Np (IV) oxidation with nitric acid. Radiochemistry 2005, 47, 252, https://doi.org/10.1007/s11137-005-0082-x.Suche in Google Scholar

35. Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J., Morss, L. The Chemistry of the Actinide and Transactinide Elements; Springer: Dordrecht, 2006.10.1007/1-4020-3598-5Suche in Google Scholar

36. Yoshida, Z., Johnson, S., Kimura, T., Krsul, J. Neptunium. In The Chemistry of the Actinide and Transactinide Elements; Springer: Dordrecht, 2006.Suche in Google Scholar

37. Mincher, B. J., Precek, M., Mezyk, S. P., Elias, G., Martin, L. R., Paulenova, A. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid. Radiochim. Acta 2013, 101, 259, https://doi.org/10.1524/ract.2013.2013.Suche in Google Scholar

38. Mincher, B. J., Precek, M., Paulenova, A. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase. J. Radioanal. Nucl. Chem. 2016, 308, 1005, https://doi.org/10.1007/s10967-015-4530-6.Suche in Google Scholar

39. Precek, M. The Kinetic and Radiolytic Aspects of Control of the Redox Speciation of Neptunium in Solutions of Nitric Acid; Oregon State University: Oregon, 2012.Suche in Google Scholar

40. Precek, M., Paulenova, A., Tkac, P., Knapp, N. Effect of gamma irradiation on the oxidation state of neptunium in nitric acid in the presence of selected scavengers. Separ. Sci. Technol. 2010, 45, 1699, https://doi.org/10.1080/01496395.2010.493833.Suche in Google Scholar

41. Sood, D., Patil, S. Chemistry of nuclear fuel reprocessing: current status. J. Radioanal. Nucl. Chem. 1996, 203, 547, https://doi.org/10.1007/bf02041529.Suche in Google Scholar

42. Mckay, H. A. C., Miles, J. H., Swanson, J. L. The PUREX process; science and technology of tributyl phosphate. In Applications of Tributyl Phosphate in Nuclear Fuel Reprocessing; CRC Press Inc.: Boca Raton, FL, Vol. 3, 1990.Suche in Google Scholar

43. McKibben, J. M. Chemistty of the purex process. Radiochim. Acta 1984, 36, 3, https://doi.org/10.1524/ract.1984.36.12.3.Suche in Google Scholar

44. Natarajan, R. Reprocessing of spent nuclear fuel in India: present challenges and future programme. Prog. Nucl. Energy 2017, 101, 118, https://doi.org/10.1016/j.pnucene.2017.03.001.Suche in Google Scholar

45. Rance, P., Chesnay, B., Killeen, T., Murray, M., Nikkinen, M., Petoe, A., Plumb, J., Saukkonen, H. Neptunium flow-sheet verification at reprocessing plants. American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States), 2007.Suche in Google Scholar

46. Zhang, H., Ye, G. A., Li, L., Zheng, W. F., Cong, H. F., Xiao, S. T., Yang, H., Lan, T. Simulation of the neptunium behavior during the first solvent extraction cycle in the PUREX process. J. Radioanal. Nucl. Chem. 2013, 295, 883; https://doi.org/10.1007/s10967-012-2297-6.Suche in Google Scholar

47. Rawat, N., Kar, A. S., Tomar, B., Pandey, M., Umadevi, K. Neptunium Determination in PUREX Process; Bhabha Atomic Research Centre: Mumbai, 2016.Suche in Google Scholar

48. Marchenko, V., Dvoeglazov, K., Volk, V. Use of redox reagents for stabilization of Pu and Np valence forms in aqueous reprocessing of spent nuclear fuel: chemical and technological aspects. Radiochemistry 2009, 51, 329, https://doi.org/10.1134/s1066362209040018.Suche in Google Scholar

49. Flanary, J., Parker, G. Progress in Nuclear Energy, Ser. III; Pergamon Press: New York, 1958.Suche in Google Scholar

50. Alcock, K., Best, G., Hesford, E., McKay, H. Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates—V: further results for the tetra-and hexavalent actinide nitrates. J. Inorg. Nucl. Chem. 1958, 6, 328, https://doi.org/10.1016/0022-1902(58)80116-5.Suche in Google Scholar

51. Kumari, N., Pathak, P., Prabhu, D., Manchanda, V. Comparison of extraction behavior of neptunium from nitric acid medium employing tri-n-butyl phosphate and N, N-dihexyl octanamide as extractants. Separ. Sci. Technol. 2012, 47, 1492, https://doi.org/10.1080/01496395.2011.653034.Suche in Google Scholar

52. Marchenko, V., Koltunov, V., Savilova, O., Zhuravleva, G. Redox kinetics of U, Pu, and Np in TBP solutions: VI. Reactions of neptunium and plutonium with organic reducing agents: determination of the final oxidation states and reaction rates. Radiochemistry 2001, 43, 276, https://doi.org/10.1023/a:1012812609241.10.1023/A:1012812609241Suche in Google Scholar

53. Marchenko, V. I., Alekseenko, V. N., Dvoeglazov, K. N. Organic reductants of Pu and Np ions in wet technology for spent nuclear fuel reprocessing. Radiochemistry 2015, 57, 366, https://doi.org/10.1134/s1066362215040050.Suche in Google Scholar

54. Ishimori, T., Nakamura, E. Distribution of neptunium between TBP and some mineral acids. Bull. Chem. Soc. Jpn. 1959, 32, 713, https://doi.org/10.1246/bcsj.32.713.Suche in Google Scholar

55. Alexander, W. R., Reijonen, H. M., McKinley, I. G. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories. Swiss J. Geosci. 2015, 108, 75, https://doi.org/10.1007/s00015-015-0187-y.Suche in Google Scholar

56. Bhattacharyya, A., Verma, P. K., Mohapatra, P. K., Pujari, P. K., Mehta, D., Kaushik, C. P. Recent Trends and Strategies in Nuclear Fuel Waste Management; Bhabha Atomic Research Centre: Mumbai, 2020.Suche in Google Scholar

57. Gonzalez-Romero, E.-M. Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des. 2011, 241, 3436, https://doi.org/10.1016/j.nucengdes.2011.03.030.Suche in Google Scholar

58. Saaty, T. L., Gholamnezhad, H. High-level nuclear waste management: analysis of options. Environ. Plann. Plann. Des. 1982, 9, 181, https://doi.org/10.1068/b090181.Suche in Google Scholar

59. Yim, M.-S., Murty, K. L. Materials issues in nuclear-waste management. JOM (J. Occup. Med.) 2000, 52, 26, https://doi.org/10.1007/s11837-000-0183-0.Suche in Google Scholar

60. Herbst, R., Baron, P., Nilsson, M. Standard and Advanced Separation: PUREX Processes for Nuclear Fuel Reprocessing. Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Woodhead Publishing: Sawston, UK, 2011; pp. 141–175.10.1533/9780857092274.2.141Suche in Google Scholar

61. Taylor, R., Gregson, C., Carrott, M., Mason, C., Sarsfield, M. Progress towards the full recovery of neptunium in an advanced PUREX process. Solvent Extr. Ion Exch. 2013, 31, 442, https://doi.org/10.1080/07366299.2013.800438.Suche in Google Scholar

62. Paulenova, A., Vandegrift, G. F.III. Factors Controlling Redox Speciation of Plutonium and Neptunium in Extraction Separation Processes; Oregon State Univ.: Corvallis, OR (United States), 2013.10.2172/1095231Suche in Google Scholar

63. Nash, K. L. A Comparison of New Reagents and Processes for Hydrometallurgical Processing of Actinides; Argonne National Laboratory, Chemistry Division: University of Chicago: Argonne, IL, 2001.Suche in Google Scholar

64. Sarsfield, M. J., Taylor, R. J., Boxall, C., Adrieux, F., Sims, H. Some aspects of neptunium acetohydroxamic acid chemistry under acidic conditions. Radiochim. Acta 2009, 97, 219, https://doi.org/10.1524/ract.2009.1598.Suche in Google Scholar

65. Taylor, R., May, I., Wallwork, A., Denniss, I., Hill, N., Galkin, B. Y., Zilberman, B. Y., Fedorov, Y. S. The applications of formo-and aceto-hydroxamic acids in nuclear fuel reprocessing. J. Alloys Compd. 1998, 271, 534; https://doi.org/10.1016/s0925-8388(98)00146-7.Suche in Google Scholar

66. Sarsfield, M. J., Sims, H. E., Taylor, R. J. Modelling Np (IV) solvent extraction between 30% tri-butyl phosphate and nitric acid in the presence of simple hydroxamic acids. Solvent Extr. Ion Exch. 2011, 29, 49.10.1080/07366299.2011.539120Suche in Google Scholar

67. Andrieux, F. P., Boxall, C., Steele, H. M., Taylor, R. J. The hydrolysis of hydroxamic acid complexants in the presence of non-oxidizing metal ions 3: ferric ions at elevated temperatures. J. Solut. Chem. 2014, 43, 608, https://doi.org/10.1007/s10953-014-0142-y.Suche in Google Scholar

68. Andrieux, F. P. L., Boxall, C., May, I., Taylor, R. The hydrolysis of hydroxamic acid complexants in the presence of non-oxidizing metal ions 2: neptunium (IV) ions. J. Solut. Chem. 2008, 37, 215, https://doi.org/10.1007/s10953-007-9225-3.Suche in Google Scholar

69. Verma, P. K., Mahanty, B., Gujar, R. B., Mohapatra, P. K. Neptunium – tri-n-butyl phosphate complexes in room temperature ionic liquids: extraction and spectroelectrochemical studies. J. Mol. Liq. 2021, 325, 115144, https://doi.org/10.1016/j.molliq.2020.115144.Suche in Google Scholar

70. Takanashi, M., Homma, S., Koga, J., Matsumoto, S. Neptunium concentration profiles in the Purex process. J. Alloys Compd. 1998, 271, 689, https://doi.org/10.1016/s0925-8388(98)00188-1.Suche in Google Scholar

71. Billard, I. Ionic liquids: new hopes for efficient lanthanide/actinide extraction and separation? In Handbook on the Physics and Chemistry of Rare Earths; Buenzli J. C. G., Pecharsky V. K., Eds. Elsevier: AE Amsterdam, 2013; p. 213.10.1016/B978-0-444-59536-2.00003-9Suche in Google Scholar

72. Mohapatra, P. K. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications. Dalton Trans. 2017, 46, 1730, https://doi.org/10.1039/c6dt04898f.Suche in Google Scholar PubMed

73. Al-Taweel, H., Al-jibori, A. Continuous extraction and stripping of neptunium by fresh and degradated tributyle phosphate using Co-60 cell. Ibn Al-Haitham J. Pure Appl. Sci. 2017, 23, 238.Suche in Google Scholar

74. Nakahara, M., Sano, Y. Uranium, plutonium and neptunium co-recovery with high nitric acid concentration in extraction section by simplified solvent extraction process. rca-Radiochimica Acta 2009, 97, 727, https://doi.org/10.1524/ract.2009.1671.Suche in Google Scholar

75. Chitnis, R., Wattal, P., Murali, M., Nair, G., Mathur, J. AKUFVE studies on extraction behaviour of neptunium from simulated HLW solutions by 30% TBP. Solvent Extr. Ion Exch. 1998, 16, 899.10.1080/07366299808934559Suche in Google Scholar

76. Chung, D. Y., Lee, E. H. The effect of acetohydroxamic acid on the distribution of Np (IV) and Np (VI) between 30% TBP and nitric acid. J. Alloys Compd. 2008, 451, 440.10.1016/j.jallcom.2007.04.238Suche in Google Scholar

77. Chitnis, R. R., Wattal, P. K., Ramanujam, A., Dhami, P. S., Gopalakrishnan, V., Mathur, J. N., Murali, M. S. Separation and recovery of uranium, neptunium, and plutonium from high level waste using tributyl phosphate: countercurrent studies with simulated waste solution. Sep. Sci. Tech. 1998, 33, 1877–1887.10.1080/01496399808545910Suche in Google Scholar

78. Dinh, B., Moisy, P., Baron, P., Calor, J.N., Espinoux, D., Lorrain, B. and Benchikouhne-Ranchoux, M., Modified PUREX first-cycle extraction for neptunium recovery. In Proceedings of the 18th International Solvent Extraction Conference (ISEC), Tuscon, AZ, USA, 2008; pp. 15–19.Suche in Google Scholar

79. Joshi, J., Pathak, P., Manchanda, V. Selective removal of uranium from high‐level waste solution employing tri‐n‐butyl phosphate as the extractant. Solvent Extr. Ion Exch. 2005, 23, 663, https://doi.org/10.1080/07366290500230594.Suche in Google Scholar

80. Sarsfield, M. J., Sims, H. E., Taylor, R. J. Extraction of neptunium (IV) ions into 30% tri‐butyl phosphate from nitric acid. Solvent Extr. Ion Exch. 2009, 27, 638.10.1080/07366290903114031Suche in Google Scholar

81. Hyder, M., Perkins, W., Thompson, M., Burney, G., Russell, E., Holcomb, H., Landon, L. Processing of Irradiated, Enriched Uranium Fuels at the Savannah River Plant; Savannah River Lab; Du Pont de Nemours (EI) and Co.: Aiken, SC (USA), 1979.10.2172/5819865Suche in Google Scholar

82. Zhaowu, Z., Jianyu, H., Zefu, Z., Yu, Z., Jianmin, Z., Weifang, Z. Uranium/plutonium and uranium/neptunium separation by the Purex process using hydroxyurea. J. Radioanal. Nucl. Chem. 2005, 262, 707, https://doi.org/10.1007/s10967-005-0497-z.Suche in Google Scholar

83. Koltunov, V., Taylor, R. J., Baranov, S., Mezhov, E., Pastuschak, V., May, I. The reduction of plutonium and neptunium ions by acetaldoxime in nitric acid. Radiochim. Acta 2000, 88, 65, https://doi.org/10.1524/ract.2000.88.2.065.Suche in Google Scholar

84. Yan, T., Zheng, W., Zuo, C., Xian, L., Zhang, Y., Bian, X., Li, R., Di, Y. The reduction of Np (VI) and Np (V) by tit dihydroxyurea and its application to the U/Np separation in the PUREX process. Radiochim. Acta 2010, 98, 35; https://doi.org/10.1524/ract.2010.1677.Suche in Google Scholar

85. Kumari, N., Pathak, P., Prabhu, D., Manchanda, V. Recovery of uranium, plutonium, and neptunium from high-level waste solutions prior to actinide partitioning. J. Hazard. Toxic Radioact. Waste 2012, 16, 327; https://doi.org/10.1061/(asce)hz.2153-5515.0000136.Suche in Google Scholar

86. Pathak, P. N. N-Dialkyl amides as extractants for spent fuel reprocessing: an overview. J. Radioanal. Nucl. Chem. 2014, 300, 7, https://doi.org/10.1007/s10967-014-2961-0.Suche in Google Scholar

87. Manchanda, V., Pathak, P. Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Separ. Purif. Technol. 2004, 35, 85, https://doi.org/10.1016/j.seppur.2003.09.005.Suche in Google Scholar

88. Mathur, J., Ruikar, P., Krishna, M. B., Murali, M., Nagar, M., Iyer, R. Extraction of Np (IV), Np (VI), Pu (IV) and U (VI) with amides, BEHSO and CMPO from nitric acid medium. Radiochim. Acta 1996, 73, 199, https://doi.org/10.1524/ract.1996.73.4.199.Suche in Google Scholar

89. Suzuki, S., Sasaki, Y., Yaita, T., Kimura, T. Study on selective separation of uranium by N, N-dialkyl-amide in ARTIST process. In Proceedings of ATALNTE 2004, Nimes, France, June 21-24, Paper No. P1-6, 2004.Suche in Google Scholar

90. Ban, Y., Hotoku, S., Tsutsui, N., Tsubata, Y., Matsumura, T. Distribution behavior of neptunium by extraction with N, N-dialkylamides (DEHDMPA and DEHBA) in mixer-settler extractors. Solvent Extr. Ion Exch. 2016, 34, 37, https://doi.org/10.1080/07366299.2015.1130423.Suche in Google Scholar

91. Mahanty, B., Verma, P. K., Mohapatra, P. Extraction of some actinide ions from nitric acid feeds using N, N-di-n-hexyloctanamide (DHOA) in an ionic liquid. J. Solut. Chem. 2020, 49, 763, https://doi.org/10.1007/s10953-020-00970-8.Suche in Google Scholar

92. Mahanty, B., Bhattacharyya, A., Kanekar, A. S., Mohapatra, P. Selective separation of neptunium from an acidic feed containing a mixture of actinides using dialkylamides. Solvent Extr. Ion Exch. 2020, 38, 290, https://doi.org/10.1080/07366299.2020.1720953.Suche in Google Scholar

93. Gogolski, J. M., Jensen, M. P., Using, N. N-dialkylamides for neptunium purification from other actinides for space applications. Separ. Sci. Technol. 2021, 56, 2775, https://doi.org/10.1080/01496395.2020.1845209.Suche in Google Scholar

94. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751, https://doi.org/10.1021/cr200002f.Suche in Google Scholar PubMed

95. Ansari, S. A., Gujar, R. B., Prabhu, D. R., Pathak, P. N., Mohapatra, P. K. Counter-current extraction of neptunium from simulated pressurized Heavy water reactor high level waste using N,N,N’,N’-Tetraoctyl diglycolamide. Solvent Extr. Ion Exch. 2012, 30, 457, https://doi.org/10.1080/07366299.2012.670601.Suche in Google Scholar

96. Gujar, R., Dhekane, G., Mohapatra, P. Liquid–liquid extraction of Np4+ and Pu4+ using several tetra-alkyl substituted diglycolamides. Radiochim. Acta 2013, 101, 719, https://doi.org/10.1524/ract.2013.2072.Suche in Google Scholar

97. Sarkar, S., Suresh, A., Sivaraman, N., Aswal, V. K. An insight into third-phase formation in the extraction of thorium nitrate by tris (2-methylbutyl) phosphate and tri-n-alkyl phosphates. Separ. Sci. Technol. 2019, 54, 970, https://doi.org/10.1080/01496395.2018.1521832.Suche in Google Scholar

98. Verma, P. K., Pathak, P. N., Mohapatra, P. K., Aswal, V. K., Sadhu, B., Sundararajan, M. An insight into third-phase formation during the extraction of thorium nitrate: evidence for aggregate formation from small-angle neutron scattering and validation by computational studies. J. Phys. Chem. B 2013, 117, 9821, https://doi.org/10.1021/jp4063548.Suche in Google Scholar PubMed

99. Ansari, S. A., Bhattacharyya, A., Mohapatra, P. K., Egberink, R. J., Huskens, J., Verboom, W. Evaluation of two aza-crown ether-based multiple diglycolamide-containing ligands for complexation with the tetravalent actinide ions Np 4+ and Pu 4+: extraction and DFT studies. RSC Adv. 2019, 9, 31928, https://doi.org/10.1039/c9ra05977f.Suche in Google Scholar PubMed PubMed Central

100. Verma, P. K., Gujar, R. B., Mohapatra, P. K., Ali, S. M., Leoncini, A., Huskens, J., Verboom, W. Highly efficient diglycolamide-functionalized dendrimers for the sequestration of tetravalent actinides: solvent extraction and theoretical studies. New J. Chem. 2021, 45, 9462; https://doi.org/10.1039/d1nj00724f.Suche in Google Scholar

101. Gujar, R. B., Mohapatra, P. K., Verboom, W. Extraction of Np4+ and Pu4+ from nitric acid feeds using three types of tripodal diglycolamide ligands. Separ. Purif. Technol. 2020, 247, 116986, https://doi.org/10.1016/j.seppur.2020.116986.Suche in Google Scholar

102. Carrott, M., Bell, K., Brown, J., Geist, A., Gregson, C., Hères, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Müllich, U., Sarsfield, M., Wilden, A., Taylor, R. Development of a new flowsheet for Co-separating the transuranic actinides: the “EURO-GANEX” process. Solvent Extr. Ion Exch. 2014, 32, 447; https://doi.org/10.1080/07366299.2014.896580.Suche in Google Scholar

103. Carrot, M., Gregson, C., Taylor, R. Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene. Solvent Extr. Ion Exch. 2013, 31, 463, https://doi.org/10.1080/07366299.2012.735559.Suche in Google Scholar

104. Burney, G. Anion Exchange of Neptunium in Nitrate Solutions; Du Pont de Nemours (EI) & Co. Savannah River Lab.: Aiken, SC, 1960.10.2172/4690459Suche in Google Scholar

105. Weaver, B., Horner, D. Distribution behavior of neptunium and plutonium between acid solutions and some organic extractants. J. Chem. Eng. Data 1960, 5, 260, https://doi.org/10.1021/je60007a007.Suche in Google Scholar

106. Keder, W., Sheppard, J., Wilson, A. The extraction of actinide elements from nitric acid solutions by tri-n-octylamine. J. Inorg. Nucl. Chem. 1960, 12, 327, https://doi.org/10.1016/0022-1902(60)80379-x.Suche in Google Scholar

107. Shukla, J., Subramanian, M. Rapid photometric determination of neptunium with xylenol orange after extraction with Aliquat-336. J. Radioanal. Nucl. Chem. 1979, 50, 159, https://doi.org/10.1007/bf02519953.Suche in Google Scholar

108. Bullock, J., Tuck, D. The solvent extraction of neptunium (V) and (VI) species: limitations in the use of amine extraction in the study of complex formation. J. Inorg. Nucl. Chem. 1971, 33, 3891, https://doi.org/10.1016/0022-1902(71)80298-1.Suche in Google Scholar

109. Cocalia, V. A., Gutowski, K. E., Rogers, R. D. The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord. Chem. Rev. 2006, 250, 755, https://doi.org/10.1016/j.ccr.2005.09.019.Suche in Google Scholar

110. Kolarik, Z. Ionic liquids: how far do they extend the potential of solvent extraction of f-elements? Solvent Extr. Ion Exch. 2013, 31, 24, https://doi.org/10.1080/07366299.2012.700589.Suche in Google Scholar

111. Sun, X., Luo, H., Dai, S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 2012, 112, 2100, https://doi.org/10.1021/cr200193x.Suche in Google Scholar PubMed

112. Vasudeva Rao, P., Venkatesan, K., Rout, A., Srinivasan, T., Nagarajan, K. Potential applications of room temperature ionic liquids for fission products and actinide separation. Separ. Sci. Technol. 2012, 47, 204, https://doi.org/10.1080/01496395.2011.628733.Suche in Google Scholar

113. Dai, S., Ju, Y., Barnes, C. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc., Dalton Trans. 1999, 1201, https://doi.org/10.1039/a809672d.Suche in Google Scholar

114. Mohapatra, P. K. Diglycolamide-based solvent systems in room temperature ionic liquids for actinide ion extraction: a review. Chem. Prod. Process Model. 2015, 10, 135, https://doi.org/10.1515/cppm-2014-0030.Suche in Google Scholar

115. Ansari, S. A., Mohapatra, P. K., Raut, D. R. Extraction of Np4+ and NpO22+ rom nitric acid medium using TODGA in room temperature ionic liquids. J. Solut. Chem. 2018, 47, 1326, https://doi.org/10.1007/s10953-018-0741-0.Suche in Google Scholar

116. Verma, P. K., Gujar, R. B., Mahanty, B., Leoncini, A., Huskens, J., Verboom, W., Mohapatra, P. K. Sequestration of tetravalent neptunium from acidic feeds using diglycolamide-functionalized dendrimers in a room temperature ionic liquid: extraction, spectroscopic and electrochemical studies. New J. Chem. 2021, 45, 17951; https://doi.org/10.1039/d1nj03098a.Suche in Google Scholar

117. Ansari, S. A., Mohapatra, P. K. A review on solid phase extraction of actinides and lanthanides with amide based extractants. J. Chromatogr. A 2017, 1499, 1, https://doi.org/10.1016/j.chroma.2017.03.035.Suche in Google Scholar PubMed

118. Ryan, J. Concentration and Final Purification of Neptunium by Anion Exchange; General Electric Co. Hanford Atomic Products Operation: Richland, Wash; 1959.10.2172/4189627Suche in Google Scholar

119. Mahanty, B., Bhattacharyya, A., Mohapatra, P. K. Separation of neptunium (IV) from actinides by solid phase extraction using a resin containing Aliquat 336. J. Chromatogr. A 2018, 1564, 94, https://doi.org/10.1016/j.chroma.2018.06.026.Suche in Google Scholar PubMed

120. Guerin, N., Langevin, M.-A., Nadeau, K., Labrecque, C., Gagne, A., Larivière, D. Determination of neptunium in environmental samples by extraction chromatography after valence adjustment. Appl. Radiat. Isot. 2010, 68, 2132, https://doi.org/10.1016/j.apradiso.2010.06.021.Suche in Google Scholar PubMed

121. Horwitz, E., McAlister, D., Bond, A., Barrans, R.Jr. Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr. Ion Exch. 2005, 23, 319, https://doi.org/10.1081/sei-200049898.Suche in Google Scholar

122. Kumar, S. S., Srivastava, A., Rao, A., Chatterjee, S., Gamre, S. Selective separation of neptunium on macroporous bifunctional anion exchange resin aided by redox speciation. Hydrometallurgy 2021, 105642, https://doi.org/10.1016/j.hydromet.2021.105642.Suche in Google Scholar

123. Gujar, R. B., Mohapatra, P. K., Iqbal, M., Huskens, J., Verboom, W. Highly efficient uptake of neptunium from acidic feeds using two solid phase extraction resins containing diglycolamide-functionalized calix [4] arene ligands. J. Chromatogr. A 2021, 1642, 462037, https://doi.org/10.1016/j.chroma.2021.462037.Suche in Google Scholar PubMed

124. Ansari, S., Pathak, P., Husain, M., Prasad, A., Parmar, V., Manchanda, V. Extraction chromatographic studies of metal ions using N, N, N′, N′-tetraoctyl diglycolamide as the stationary phase. Talanta 2006, 68, 1273, https://doi.org/10.1016/j.talanta.2005.07.042.Suche in Google Scholar PubMed

125. Choppin, G. R. Actinide speciation in aquatic systems. Mar. Chem. 2006, 99, 83, https://doi.org/10.1016/j.marchem.2005.03.011.Suche in Google Scholar

126. Van Hecke, K., Modolo, G. Separation of actinides from low level liquid wastes (LLLW) by extraction chromatography using novel DMDOHEMA and TODGA impregnated resins. J. Radioanal. Nucl. Chem. 2004, 261, 269, https://doi.org/10.1023/b:jrnc.0000034858.26483.ae.10.1023/B:JRNC.0000034858.26483.aeSuche in Google Scholar

127. Jagasia, P., Dhami, P., Rao, K., Yadav, J., Mohapatra, P. K., Bhattacharyya, A., Mahanty, B., Kaushik, C. P., Pujari, P. K. Extraction Chromatography Based Separation of Neptunium for Purex Dissolver and HLLW Stream. Report BARC/2020/E0001; Bhabha Atomic Research Centre, 2020.Suche in Google Scholar

128. Walther, C., Denecke, M. A. Actinide colloids and particles of environmental concern. Chem. Rev. 2013, 113, 995, https://doi.org/10.1021/cr300343c.Suche in Google Scholar PubMed

129. Zhang, Z., Parker, B. F., Lohrey, T. D., Teat, S. J., Arnold, J., Rao, L. Complexation-assisted reduction: complexes of glutaroimide-dioxime with tetravalent actinides (Np (IV) and Th (IV)). Dalton Trans. 2018, 47, 8134, https://doi.org/10.1039/c8dt01191e.Suche in Google Scholar PubMed

Received: 2022-01-11
Revised: 2022-02-28
Accepted: 2022-03-23
Published Online: 2022-05-09
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2022-0008/html?lang=de
Button zum nach oben scrollen