Abstract
The field of radiochemistry in the Republic of Korea has expanded greatly over the last three decades to meet the rapid growth of technological demands in various areas such as nuclear energy and nuclear technologies for human health and environmental protection. Major research activities, which were initially centered at the Korea Atomic Energy Research Institute (KAERI), have gradually spread to major universities and the commercial sector. In this review, progress and recent research trends in nuclear and radiochemistry in Korea are summarized. The main research outcomes achieved by KAERI scientists are highlighted, with emphasis on basic actinide chemistry in nuclear fuel cycles, the radioanalytical chemistry of various radionuclides from radioactive waste and the environment, and medical radionuclide production. In addition, recent efforts to promote radiochemical education and future perspectives are briefly outlined.
Funding source: Nuclear Research and Development program of the National Research Foundation of Korea
Award Identifier / Grant number: 2017M2A8A-5014719
Award Identifier / Grant number: -5014716
Award Identifier / Grant number: 2021M2E3A3040092
Award Identifier / Grant number: 2017M2A2A6A05016600
Funding source: KAERI R&D program of Science and ICT of Korea
Award Identifier / Grant number: 521320-21
Acknowledgments
The authors would like to thank Drs. Jeongmook Lee, Sang Eun Bae, Chi Gyu Lee, Jei-Won Yeon, Euo Chang Jung, and Kyungkyun Park for providing key information and valuable discussions. All the achievements of KAERI would not have been possible without the endeavors of senior radiochemists. We acknowledge their efforts and contributions to build NCRD and ARTI at KAERI. Lastly, we thank Prof. S.M. Qaim for his encouragement of this review.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was supported by the Nuclear Research and Development program of the National Research Foundation of Korea (Grant Nos. 2017M2A8A-5014719, -5014716, 2021M2E3A3040092, and 2017M2A2A6A05016600) and the KAERI R&D program of Science and ICT of Korea (521320-21).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Kim, J. S., Han, S. H., Suh, M. Y., Joe, K. S. Burnup measurement of irradiated uranium dioxide fuel by chemical methods. J. Korean Nucl. Soc. 1989, 21, 226–235.Suche in Google Scholar
2. Kim, J. S., Jeon, Y. S., D, P. S., Song, B. C., Han, S. H., Kim, J. G. Dissolution and burnup determination of irradiated U-Zr alloy nuclear fuel by chemical methods. Nucl. Eng. Technol. 2006, 38, 301–310.Suche in Google Scholar
3. Kim, J. S., Jeon, Y. S., Park, S. D., Han, S. H., Kim, J. G. Burnup determination of high burnup and dry processed fuels based on isotope dilution mass spectrometric measurements. J. Nucl. Sci. Technol. 2007, 44, 1015–1023. https://doi.org/10.1080/18811248.2007.9711341.Suche in Google Scholar
4. Park, K. J., Ju, J. S., Kim, J. S., Shin, H. S., Chun, Y. B., Kim, H. D. Determination of burnup and Pu/U ratio of PWR spent fuels by gamma-ray spectrometry. Nucl. Eng. Technol. 2009, 41, 1307–1314. https://doi.org/10.5516/net.2009.41.10.1307.Suche in Google Scholar
5. Ha, Y. K., Kim, J., Jeon, Y. S., Han, S. H. O., Seo, H. S., Song, K. Local burnup characteristics of PWR spent nuclear fuels discharged from Yeonggwang-2 nuclear power plant. Nucl. Eng. Technol. 2010, 42, 79–88. https://doi.org/10.5516/net.2010.42.1.079.Suche in Google Scholar
6. Kim, J. S., Jeon, Y. S., Park, S. D., Ha, Y. K., Song, K. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup. Nucl. Eng. Technol. 2015, 47, 924–933. https://doi.org/10.1016/j.net.2015.08.002.Suche in Google Scholar
7. Han, S. H., Choi, G. S., Kim, J. S., Jeon, Y. S., Park, Y. S., Jee, K. Y., Kim, W. H. Determination of La in U3Si/Al spent nuclear fuel by ion chromatography-inductively coupled plasma-mass spectrometry. Anal. Sci. Technol. 2000, 13, 601–607.Suche in Google Scholar
8. Matzke, H. On the rim effect in high burnup UO2 LWR fuels. J. Nucl. Mater. 1992, 189, 141–148. https://doi.org/10.1016/0022-3115(92)90428-n.Suche in Google Scholar
9. Ha, Y. K., Han, S. H., Kim, H. G., Kim, W. H., Jee, K. Y. Shielded laser ablation ICP-MS system for the characterization of high burnup fuel. Nucl. Eng. Technol. 2008, 40, 311–318. https://doi.org/10.5516/net.2008.40.4.311.Suche in Google Scholar
10. White, R. J., Fisher, S. B., Cook, P. M. A., Stratton, R., Walker, C. T., Palmer, I. D. Measurement and analysis of fission gas release from BNFL’s SBR MOX fuel. J. Nucl. Mater. 2001, 288, 43–56. https://doi.org/10.1016/s0022-3115(00)00591-2.Suche in Google Scholar
11. Manzel, R., Walker, C. T. EPMA and SEM of fuel samples from PWR rods with an average burn-up of around 100 MWd/kgHM. J. Nucl. Mater. 2002, 301, 170–182. https://doi.org/10.1016/s0022-3115(01)00753-x.Suche in Google Scholar
12. Park, S. D., Min, D. K., Ha, Y. K., Song, K. The measurement of compositions and the isotopic distribution of released fission gas in the fuel rods of pressurized water reactors (PWR) of Korea. J. Radioanal. Nucl. Chem. 2010, 284, 287–295. https://doi.org/10.1007/s10967-009-0437-4.Suche in Google Scholar
13. Park, S. D., Park, Y. S., Ha, Y. K., Song, K. The measurement of retained fission gas compositions and their isotopic distributions in an irradiated oxide fuel by inert gas fusion-mass spectrometric analysis. J. Radioanal. Nucl. Chem. 2011, 289, 149–160. https://doi.org/10.1007/s10967-011-1047-5.Suche in Google Scholar
14. Park, S. D., Kwon, H. M., Kim, D. S., Ha, Y. K., Song, K. Distribution characteristics of fission gas along the axial direction for an irradiated fuel rod of a pressurized water reactor (PWR). J. Radioanal. Nucl. Chem. 2013, 298, 679–689. https://doi.org/10.1007/s10967-013-2574-z.Suche in Google Scholar
15. Youn, Y. S., Park, S. D., Kim, J. Y., Park, J. Y., Ha, Y. K. Quantitative and isotopic analysis of released and retained krypton and xenon fission gases from irradiated metallic fuels. J. Radioanal. Nucl. Chem. 2017, 312, 517–521. https://doi.org/10.1007/s10967-017-5254-6.Suche in Google Scholar
16. Kim, D. H., Bae, S. E., Park, T. H., Kim, J. Y., Lee, C. W., Song, K. Real-time monitoring of metal ion concentration in LiCl-KCl melt using electrochemical techniques. Microchem. J. 2014, 114, 261–265. https://doi.org/10.1016/j.microc.2014.01.011.Suche in Google Scholar
17. Bae, S. E., Park, Y. J., Min, S. K., Cho, Y. H., Song, K. Aluminum assisted electrodeposition of europium in LiCl-KCl molten salt. Electrochim. Acta 2010, 55, 3022–3025. https://doi.org/10.1016/j.electacta.2009.12.075.Suche in Google Scholar
18. Lee, N. R., Kang, B., Choi, S., Bae, S. E., Park, T. H., Kim, J. Y., Kim, J. Co-electrodeposition of U and Mo from a LiCl-KCl melt. J. Nucl. Mater. 2018, 499, 98–106. https://doi.org/10.1016/j.jnucmat.2017.11.009.Suche in Google Scholar
19. Jung, E. C., Bae, S. E., Cha, W., Bae, I. A., Park, Y. J., Song, K. Temperature dependence of laser-induced fluorescence of Tb3+ in molten LiCl-KCl eutectic. Chem. Phys. Lett. 2011, 501, 300–303. https://doi.org/10.1016/j.cplett.2010.11.039.Suche in Google Scholar
20. Jung, E. C., Bae, S. E., Park, Y. J., Song, K. Time-resolved laser-induced fluorescence spectroscopy of Nd3+ in molten LiCl-KCl eutectic. Chem. Phys. Lett. 2011, 516, 177–181. https://doi.org/10.1016/j.cplett.2011.09.093.Suche in Google Scholar
21. Kim, D. H., Park, T. H., Bae, S. E., Lee, N., Kim, J. Y., Cho, Y. H., Yeon, J. W., Song, K. Electrochemical preparation and spectroelectrochemical study of neptunium chloride complexes in LiCl–KCl eutectic melts. J. Radioanal. Nucl. Chem. 2016, 308, 31–36. https://doi.org/10.1007/s10967-015-4321-0.Suche in Google Scholar
22. Choi, S., Bae, S.-E., Park, T.-H. Electrochemical and spectroscopic monitoring of interactions of oxide ion with U(III) and Ln(III) (Ln = Nd, Ce, and La) in LiCl-KCl melts. J. Electrochem. Soc. 2017, 164, H5068–H5073. https://doi.org/10.1149/2.0071708jes.Suche in Google Scholar
23. Bae, S. E., Jung, T. S., Cho, Y. H., Kim, J. Y., Kwak, K., Park, T. H. Electrochemical formation of divalent samarium cation and its characteristics in LiCl-KCl melt. Inorg. Chem. 2018, 57, 8299–8306; https://doi.org/10.1021/acs.inorgchem.8b00909.Suche in Google Scholar PubMed
24. Bin Faheem, A., Kim, J. Y., Bae, S. E., Lee, K. K. Efficient parameterization of intermolecular force fields for molecular dynamics simulations via genetic algorithms. J. Mol. Liq. 2021, 337, 116579; https://doi.org/10.1016/j.molliq.2021.116579.Suche in Google Scholar
25. Jung, E. C., Yun, J. I., Kim, J. I., Park, Y. J., Park, K. K., Fanghänel, T., Kim, W. H. Size measurement of nanoparticles using the emission intensity distribution of laser-induced plasma. Appl. Phys. B 2006, 85, 625–629. https://doi.org/10.1007/s00340-006-2307-x.Suche in Google Scholar
26. Jung, E. C., Yun, J. I., Kim, J. I., Bouby, M., Geckeis, H., Park, Y. J., Park, K. K., Fanghänel, T., Kim, W. H. Measurement of bimodal size distribution of nanoparticles by using the spatial distribution of laser-induced plasma. Appl. Phys. B 2007, 87, 497–502. https://doi.org/10.1007/s00340-007-2626-6.Suche in Google Scholar
27. Jung, E. C., Cho, H. R., Park, K. K., Yeon, J. W., Song, K. Nanoparticle sizing by a laser-induced breakdown detection using an optical probe beam deflection. Appl. Phys. B 2009, 97, 867–875. https://doi.org/10.1007/s00340-009-3780-9.Suche in Google Scholar
28. Cho, H. R., Jung, E. C., Jee, K. Y. Probe beam detection of laser-induced breakdown for measuring solubility of actinide compounds. Jpn. J. Appl. Phys. 2008, 47, 3530–3532. https://doi.org/10.1143/jjap.47.3530.Suche in Google Scholar
29. Cho, H. R., Youn, Y. S., Jung, E. C., Cha, W. Hydrolysis of trivalent plutonium and solubility of Pu(OH)3(am) under electrolytic reducing conditions. Dalton Trans. 2016, 45, 19449–19457. https://doi.org/10.1039/c6dt03992h.Suche in Google Scholar PubMed
30. Cho, H. R., Jung, E. C., Cha, W., Song, K. Quantitative analysis of uranium in aqueous solutions using a semiconductor laser-based spectroscopic method. Anal. Chem. 2013, 85, 4279–4283. https://doi.org/10.1021/ac303752t.Suche in Google Scholar PubMed
31. Cha, W., Lee, S. Y., Jung, E. C., Cho, H. R., Baik, M. H. Determination of U(VI) and U(IV) concentrations in aqueous samples containing strong luminescence quenchers using TRLFS. J. Radioanal. Nucl. Chem. 2014, 302, 1127–1136. https://doi.org/10.1007/s10967-014-3319-3.Suche in Google Scholar
32. Jung, E. C., Cho, H. R., Cha, W., Park, J. H., Baik, M. H. Uranium determination in groundwater using laser spectroscopy. Rev. Anal. Chem. 2014, 33, 245–254. https://doi.org/10.1515/revac-2014-0013.Suche in Google Scholar
33. Baik, M. H., Jung, E. C., Jeong, J. Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS. J. Radioanal. Nucl. Chem. 2015, 305, 589–598. https://doi.org/10.1007/s10967-015-3971-2.Suche in Google Scholar
34. Cha, W., Cho, H.-R., Park, K., Jung, E. C., Kim, W., Song, K. Spectroscopic studies on U(VI)-salicylate complex formation with multiple equilibria. Radiochim. Acta 2012, 100, 371–379. https://doi.org/10.1524/ract.2012.1930.Suche in Google Scholar
35. Cha, W., Cho, H. R., Jung, E. C. Studies of aqueous U(VI)-thiosalicylate complex formation via UV-Vis absorption spectrophotometry, TRLFS and potentiometry. Polyhedron 2013, 55, 201–208. https://doi.org/10.1016/j.poly.2013.02.080.Suche in Google Scholar
36. Jung, E. C., Cho, H. R., Baik, M. H., Kim, H., Cha, W. Time-resolved laser fluorescence spectroscopy of UO2(CO3)34-. Dalton Trans. 2015, 44, 18831–18838. https://doi.org/10.1039/c5dt02873f.Suche in Google Scholar PubMed
37. Cho, H. R., Jung, E. C., Park, K. K., Kim, W. H., Song, K., Yun, J. I. Spectroscopic study on the mononuclear hydrolysis species of Pu(VI) under oxidation conditions. Radiochim. Acta 2010, 98, 765–770. https://doi.org/10.1524/ract.2010.1782.Suche in Google Scholar
38. Cho, H. R., Jung, E. C., Park, K. K., Song, K., Yun, J. I. Effect of reduction on the stability of Pu(VI) hydrolysis species. Radiochim. Acta 2010, 98, 555–561. https://doi.org/10.1524/ract.2010.1753.Suche in Google Scholar
39. Cha, W., Kim, H. K., Cho, H., Cho, H. R., Jung, E. C., Lee, S. Y. Studies of aqueous U(IV) equilibrium and nanoparticle formation kinetics using spectrophotometric reaction modeling analysis. RSC Adv. 2020, 10, 36723–36733. https://doi.org/10.1039/d0ra05352j.Suche in Google Scholar PubMed PubMed Central
40. Kim, H. K., Jeong, K., Cho, H. R., Jung, E. C., Kwak, K., Cha, W. Spectroscopic speciation of aqueous Am(III)-oxalate complexes. Dalton Trans. 2019, 48, 10023–10032. https://doi.org/10.1039/c9dt01087d.Suche in Google Scholar PubMed
41. Kim, H. K., Jeong, K., Cho, H. R., Kwak, K., Jung, E. C., Cha, W. Study of aqueous Am(III)-aliphatic dicarboxylate complexes: coordination mode-dependent optical property and stability changes. Inorg. Chem. 2020, 59, 13912–13922. https://doi.org/10.1021/acs.inorgchem.0c01538.Suche in Google Scholar PubMed
42. Jo, Y., Cho, H. R., Yun, J. I. Visible-NIR absorption spectroscopy study of the formation of ternary plutonyl(VI) carbonate complexes. Dalton Trans. 2020, 49, 11605–11612. https://doi.org/10.1039/d0dt01982h.Suche in Google Scholar PubMed
43. Jo, Y., Kim, H. K., Yun, J. I. Complexation of UO2(CO3)34- with Mg2+ at varying temperatures and its effect on U(VI) speciation in groundwater and seawater. Dalton Trans. 2019, 48, 14769–14776. https://doi.org/10.1039/c9dt03313k.Suche in Google Scholar PubMed
44. Jo, Y., Kirishima, A., Kimuro, S., Kim, H. K., Yun, J. I. Formation of CaUO2(CO3)32- and Ca2UO2(CO3)3(aq) complexes at variable temperatures (10-70 °C). Dalton Trans. 2019, 48, 6942–6950. https://doi.org/10.1039/c9dt01174a.Suche in Google Scholar PubMed
45. Choi, S., Yun, J. I. Spectroscopic study on aqueous uranyl(VI) complexes with methoxy- and methylbenzoates: electronic and steric effects of the substituents. Inorg. Chem. 2020, 59, 15194–15203. https://doi.org/10.1021/acs.inorgchem.0c02173.Suche in Google Scholar PubMed
46. Husnain, S. M., Kim, H. J., Um, W., Chang, Y. Y., Chang, Y. S. Superparamagnetic adsorbent based on phosphonate grafted mesoporous carbon for uranium removal. Ind. Eng. Chem. Res. 2017, 56, 9821–9830. https://doi.org/10.1021/acs.iecr.7b01737.Suche in Google Scholar
47. Kim, J., Kim, H., Kim, W. S., Um, W. Dissolution of studtite [UO2(O2)(H2O)4] in various geochemical conditions. J. Environ. Radioact. 2018, 189, 57–66. https://doi.org/10.1016/j.jenvrad.2018.01.010.Suche in Google Scholar PubMed
48. Lee, M. S., Um, W., Wang, G., Kruger, A. A., Lukens, W. W., Rousseau, R., Glezakou, V. A. Impeding 99Tc(IV) mobility in novel waste forms. Nat. Commun. 2016, 7, 12067; https://doi.org/10.1038/ncomms12067.Suche in Google Scholar PubMed PubMed Central
49. Lee, J., Park, J. I., Youn, Y.-S., Ha, Y.-K., Kim, J.-Y. Application of laser ablation inductively coupled plasma mass spectrometry for characterization of U-7Mo/Al-5Si dispersion fuels. Nucl. Eng. Technol. 2017, 49, 645–650. https://doi.org/10.1016/j.net.2016.08.014.Suche in Google Scholar
50. Lee, J., Kim, J., Youn, Y.-S., Liu, N., Kim, J.-G., Ha, Y.-K., Shoesmith, D. W., Kim, J.-Y. Raman study on structure of U1−yGdyO2−x (y=0.005, 0.01, 0.03, 0.05 and 0.1) solid solutions. J. Nucl. Mater. 2017, 486, 216–221. https://doi.org/10.1016/j.jnucmat.2017.01.004.Suche in Google Scholar
51. Kim, J., Lee, J., Youn, Y.-S., Liu, N., Kim, J.-G., Ha, Y.-K., Bae, S.-E., Shoesmith, D. W., Kim, J.-Y. The combined influence of gadolinium doping and non-stoichiometry on the structural and electrochemical properties of uranium dioxide. Electrochim. Acta 2017, 247, 942–948. https://doi.org/10.1016/j.electacta.2017.07.023.Suche in Google Scholar
52. Lee, J., Kwon, C., Kim, J., Youn, Y. S., Kim, J. Y., Han, B., Lim, S. H. Integrated study of experiment and first-principles computation for the characterization of a corium type ZrO8 complex in a Zr-doped fluorite UO2. Int. J. Energy Res. 2019, 43, 3322–3329. https://doi.org/10.1002/er.4469.Suche in Google Scholar
53. Park, J., Cho, S. Y., Youn, Y. S., Lee, J., Kim, J. Y., Park, S. H., Bae, S. E., Kuk, S. W., Park, J. Y., Rhee, C. K., Lim, S. H. Anisotropic lattice thermal expansion of uranium-based metallic fuels: a high-temperature X-ray diffraction study. J. Nucl. Mater. 2019, 527, 151803. https://doi.org/10.1016/j.jnucmat.2019.151803.Suche in Google Scholar
54. Park, S., Kim, K. J., Lee, J., Kim, J. Y., Lee, D. W., Lim, S. H., Youn, Y. S. Synchrotron-based high-resolution photoemission spectroscopy study of ZIRLO cladding with H2O adsorption: coverage and temperature dependence. Sci. Rep. 2020, 10, 6650. https://doi.org/10.1038/s41598-020-63585-5.Suche in Google Scholar PubMed PubMed Central
55. Kim, T. H., Park, J., Lee, J., Kim, J., Kim, J. Y., Lim, S. H. Statistical methodologies for scaling factor implementation: Part 1. overview of current scaling factor method for radioactive waste characterization. J. Nucl. Fuel Cycle Waste Technol. 2020, 18, 517–536. https://doi.org/10.7733/jnfcwt.2020.18.4.517.Suche in Google Scholar
56. Nuclear Safety and Security Commission. General Aceptance Criteria for Low- and Intermediate-Level Radioactive Waste, Notice No; 2020-11; Ministry of Government Legislation: Seoul.Suche in Google Scholar
57. Waste Acceptance Criteria for the First Phase Disposal Facility of the Wolseong Low and Intermediate Level Radioactive Waste Disposal Centre (WLDC), WAC-SIL-2021-2. Korea Radioactive Waste Agency, Gyeongju.Suche in Google Scholar
58. Hwang, S., Lee, S., Kang, K. J., Lee, C., Jeong, S., Ahn, T., Kim, T., Kim, Y., Herr, Y., Song, M. Development of radionuclide inventory declaration methods using scaling factors for the Korean NPPs - scope and activity determination method. J. Korean Radioact. Waste Soc. 2004, 2, 77–85.Suche in Google Scholar
59. Kim, T., Kang, K., Ha, J. Determination and verification of the scaling factor for the radionuclide inventory of the radioactive waste from nuclear power plants. J. Nucl. Sci. Technol. 2008, 45, 756–757. https://doi.org/10.1080/00223131.2008.10875965.Suche in Google Scholar
60. Lee, J. J., Pyo, H. Y., S, J. J., Lee, C. H., Jee, K. Y., Ji, P. K. Determination of major and minor elements in low and medium level radioactive wastes using closed-vessel microwave acid digestion. J. Korean Radioact. Waste Soc. 2004, 2, 231–238.Suche in Google Scholar
61. Ahn, H. J., Lee, M. H., Sohn, S. C., Jee, K. Y., Song, K. Optimization study on sample pretreatment of spent fuel storage rack. J. Radioanal. Nucl. Chem. 2010, 285, 199–205. https://doi.org/10.1007/s10967-010-0548-y.Suche in Google Scholar
62. Choi, K. S., Lee, C. H., Im, H. J., Ahn, H. J., Song, K. Sample pretreatment for the determination of gamma emitting nuclides in dry radioactive waste using a dry ashing and high-performance microwave digestion system. J. Radioanal. Nucl. Chem. 2014, 301, 567–571. https://doi.org/10.1007/s10967-014-3163-5.Suche in Google Scholar
63. Lee, C. H., Suh, M. Y., Jee, K. Y., Kim, W. H. Sequential separation of 99Tc, 94Nb, 55Fe, 90Sr and 59/63Ni from radioactive wastes. J. Radioanal. Nucl. Chem. 2007, 272, 187–194. https://doi.org/10.1007/s10967-006-6835-y.Suche in Google Scholar
64. Lee, C. H., Lee, M. H., Han, S. H., Ha, Y. K., Kyuseok, S. Systematic radiochemical separation for the determination of 99Tc, 90Sr, 94Nb, 55Fe and 59,63Ni in low and intermediate radioactive waste samples. J. Radioanal. Nucl. Chem. 2011, 288, 319–325. https://doi.org/10.1007/s10967-011-0984-3.Suche in Google Scholar
65. Lee, C. H., Choi, K. S., Song, B. C., Ha, Y. K., Song, K. Rapid separation of nickel for 59Ni and 63Ni activity measurement in radioactive waste samples. J. Radioanal. Nucl. Chem. 2013, 298, 1221–1226. https://doi.org/10.1007/s10967-013-2513-z.Suche in Google Scholar
66. Lee, C. H., Ahn, H. J., Lee, J. M., Ha, Y. K., Kim, J. Y. Rapid separation of 99Tc, 90Sr, 55Fe, 94Nb, and 59,63Ni in radioactive waste samples. J. Radioanal. Nucl. Chem. 2016, 308, 809–816. https://doi.org/10.1007/s10967-015-4535-1.Suche in Google Scholar
67. Choi, K. S., Lee, C. H., Im, H. J., Yoo, J. B., Ahn, H. J. Separation of 99Tc, 90Sr, 59,63Ni, 55Fe and 94Nb from activated carbon and stainless steel waste samples. J. Radioanal. Nucl. Chem. 2017, 314, 2145–2154. https://doi.org/10.1007/s10967-017-5566-6.Suche in Google Scholar
68. Lee, Y. J., Lim, J. M., Lee, J. H., Hong, S. B., Kim, H. Analytical method for determination of 41Ca in radioactive concrete. Nucl. Eng. Technol. 2021, 53, 1210–1217. https://doi.org/10.1016/j.net.2020.09.020.Suche in Google Scholar
69. Kim, H., Lim, J. M., Jang, M., Park, J. Y. Review of the gross alpha for characterization of radioactive waste. J. Nucl. Fuel Cycle Waste Technol. 2020, 18, 227–235. https://doi.org/10.7733/jnfcwt.2020.18.2(e).227.Suche in Google Scholar
70. Joe, K., Lee, C. H., Song, B. C., Jeon, Y. S., Kim, W. H., Suh, J. K. Electrodeposition of 241Am and 244Cm in spent nuclear fuel samples for alpha-spectrometry. Bull. Kor. Chem. Soc. 2003, 24, 657–660.10.5012/bkcs.2003.24.5.657Suche in Google Scholar
71. Joe, K., Song, B. C., Kim, Y. B., Jeon, Y. S., Han, S. H., Jung, E. C., Song, K. Determination of the transuranic elements inventory in high burnup PWR spent fuel samples by alpha spectrometry-II. Nucl. Eng. Technol. 2009, 41, 99–106. https://doi.org/10.5516/net.2009.41.1.099.Suche in Google Scholar
72. Lee, M. H., Jung, E. C., Kim, W. H., Jee, K. Y. Sequential separation of the actinides in environmental and radioactive waste samples. J. Alloys Compd. 2007, 444–445, 544–549. https://doi.org/10.1016/j.jallcom.2007.06.100.Suche in Google Scholar
73. Lee, M. H., Jeon, Y. S., Song, K. Determination of activity concentrations and activity ratios of plutonium, americium and curium isotopes in radioactive waste samples. J. Radioanal. Nucl. Chem. 2009, 280, 457–465. https://doi.org/10.1007/s10967-008-7442-x.Suche in Google Scholar
74. Lee, M. H., Park, T.-H., Song, B. C., Park, J. H., Song, K. A study of simple a source preparation using a micro-coprecipitation method. Bull. Kor. Chem. Soc. 2012, 33, 3745–3748. https://doi.org/10.5012/bkcs.2012.33.11.3745.Suche in Google Scholar
75. Park, T.-H., Jeon, E.-H., Choi, Y. S., Park, J.-H., Ahn, H. J., Park, Y. J. Rapid quantification of alpha emitters in low- and intermediate-level dry radioactive waste. J. Radioanal. Nucl. Chem. 2016, 307, 645–651. https://doi.org/10.1007/s10967-015-4177-3.Suche in Google Scholar
76. Park, S. D., Lee, H. N., Ahn, H. J., Kim, J. S., Han, S. H., Jee, K. Y. Distribution of 14C and 3H in low level radioactive wastes generated by wet waste streams from pressurized water reactors. J. Radioanal. Nucl. Chem. 2006, 270, 507–514. https://doi.org/10.1007/s10967-006-0456-3.Suche in Google Scholar
77. Park, S. D., Kim, J. S., Han, S. H., Jee, K. Y. Distribution characteristics of 14C and 3H in spent resins from the Canada deuterium uranium-pressurized heavy water reactors (CANDU-PHWRs) of Korea. J. Radioanal. Nucl. Chem. 2008, 277, 503–511. https://doi.org/10.1007/s10967-007-7112-4.Suche in Google Scholar
78. Ahn, H. J., Song, B. C., Sohn, S. C., Lee, M. H., Song, K., Jee, K. Y. Application of a wet oxidation method for the quantification of 3H and 14C in low-level radwastes. Appl. Radiat. Isot. 2013, 81, 62–66. https://doi.org/10.1016/j.apradiso.2013.03.059.Suche in Google Scholar PubMed
79. Kim, H. R. The radioactivity estimation of C-14 and H-3 in graphite waste samples of the KRR-2. Appl. Radiat. Isot. 2013, 79, 109–113. https://doi.org/10.1016/j.apradiso.2013.04.027.Suche in Google Scholar PubMed
80. Lim, J. M., Kang, M. J., Chung, K. H., Kim, C. J., Choi, G. S. Application of a high-temperature tube furnace and liquid scintillation counter for radioactivity determination of 14C and 3H in solid waste samples. J. Radioanal. Nucl. Chem. 2015, 303, 1111–1115. https://doi.org/10.1007/s10967-014-3425-2.Suche in Google Scholar
81. Park, S. D., Kim, J. S., Han, S. H., Ha, Y. K., Song, K. S., Jee, K. Y. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants. Appl. Radiat. Isot. 2009, 67, 1676–1682. https://doi.org/10.1016/j.apradiso.2009.01.086.Suche in Google Scholar PubMed
82. Cho, K. C., Song, B. C., Han, S. H., Park, Y. J., Song, K. Determination of 129I in simulated radioactive wastes using distillation technique. J. Korean Radioact. Waste Soc. 2011, 9, 141–148. https://doi.org/10.7733/jkrws.2011.9.3.141.Suche in Google Scholar
83. Choi, K. C., Han, S. H., Jee, K. Y., Choi, K. S. Sample pre-treatment for measurement of 129I in radwastes. J. Korean Radioact. Waste Soc. 2005, 3, 49–56.Suche in Google Scholar
84. Choi, K. C., Park, Y. J., Song, K. Determination of the 129I in primary coolant of PWR. Nucl. Eng. Technol. 2013, 45, 61–66. https://doi.org/10.5516/net.06.2012.040.Suche in Google Scholar
85. Song, K., Park, J. H., Lee, C. G., Lim, S. H., Han, S. H., Park, J. Development of environmental sample analysis technique in KAERI: bulk analysis and establishment of clean laboratory facility (CLASS). J. Radioanal. Nucl. Chem. 2016, 307, 1847–1852. https://doi.org/10.1007/s10967-015-4372-2.Suche in Google Scholar
86. Lee, C. G., Suzuki, D., Esaka, F., Magara, M., Song, K. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation. Talanta 2015, 141, 92–96. https://doi.org/10.1016/j.talanta.2015.03.060.Suche in Google Scholar PubMed
87. Lim, S. H., Park, R., Choi, E. J., Han, S. H., Park, J., Lee, C. G. Improvement of bulk analysis technique for uranium in environmental samples with high thorium contents. J. Radioanal. Nucl. Chem. 2017, 314, 2047–2055. https://doi.org/10.1007/s10967-017-5550-1.Suche in Google Scholar
88. Park, J., Kim, T. H., Lee, C. G., Lim, S. H., Han, S. H. A simple correction method for isobaric interferences induced by lead during uranium isotope analysis using secondary ion mass spectrometry. J. Radioanal. Nucl. Chem. 2018, 316, 1273–1280. https://doi.org/10.1007/s10967-018-5798-0.Suche in Google Scholar
89. Lee, C. G., Park, R., Park, J., Lim, S. H. A comparative study of ultra-trace-level uranium by thermal ionization mass spectrometry with continuous heating: static and peak-jumping modes. Nucl. Eng. Technol. 2020, 52, 1532–1536. https://doi.org/10.1016/j.net.2019.12.023.Suche in Google Scholar
90. Lee, C.-G., Park, J., Lim, S. H. Accurate determination of minor isotope ratios in individual plutonium–uranium mixed particles by thermal ionization mass spectrometry. Nucl. Eng. Technol. 2018, 50, 140–144. https://doi.org/10.1016/j.net.2017.10.010.Suche in Google Scholar
91. Kim, T. H., Park, J., Lee, N. R., Lee, C. G. Improvement in the particle collection method to mitigate the mixing effect during uranium isotope analysis of environmental samples using secondary ion mass spectrometry. J. Radioanal. Nucl. Chem. 2020, 326, 1887–1894. https://doi.org/10.1007/s10967-020-07431-y.Suche in Google Scholar
92. Qaim, S. Medical Radionuclide Production: Science and Technology; De Gruyter: Berlin/Boston, 2019.10.1515/9783110604375Suche in Google Scholar
93. Han, H. S., Cho, W. K., Park, U. J., Hong, Y. D., Park, K. B. Current status and future plan for the production of radioisotopes using HANARO research reactor. J. Radioanal. Nucl. Chem. 2003, 257, 47–51. https://doi.org/10.1023/a:1024732907316.10.1023/A:1024732907316Suche in Google Scholar
94. Han, H. S., Park, U. J., Son, K. J., Lee, J. S., Hong, S. B., Nam, S. S. Development of production technology of 125I seed for brachytherapy. J. Label. Compd. Radiopharm. 2007, 50, 321–322. https://doi.org/10.1002/jlcr.1380.Suche in Google Scholar
95. Park, U. J., Lee, J. S., Son, K. J., Han, H. S., Nam, S. S. The adsorption of 125I on a Ag+Al2O3 rod as a carrier body for a brachytherapy source. J. Radioanal. Nucl. Chem. 2008, 277, 429–432. https://doi.org/10.1007/s10967-007-7096-0.Suche in Google Scholar
96. Lee, J. S., Park, U. J., Son, K. J., Han, H. S. One column operation for 90Sr/90Y separation by using a functionalized-silica. Appl. Radiat. Isot. 2009, 67, 1332–1335. https://doi.org/10.1016/j.apradiso.2009.02.029.Suche in Google Scholar PubMed
97. Lee, J. S., Park, U. J., Son, K. J., Han, H. S. Development of a high performance 188W/188Re generator by using a synthetic alumina. Appl. Radiat. Isot. 2009, 67, 1162–1166. https://doi.org/10.1016/j.apradiso.2009.02.062.Suche in Google Scholar PubMed
98. Park, U. J., Choi, K. H., Lee, J. S., Cho, E. H., Yu, K. H. Reversed-phase ion-pair liquid chromatography for the purification of 177Lu. J. Radioanal. Nucl. Chem. 2016, 310, 339–346. https://doi.org/10.1007/s10967-016-4847-9.Suche in Google Scholar
99. Park, U. J., Lee, J.-S., Choi, K. H., Nam, S. S., Yu, K. H. Lu-177 preparation for radiotherapy application. Appl. Radiat. Isot. 2016, 115, 8–12. https://doi.org/10.1016/j.apradiso.2016.05.028.Suche in Google Scholar PubMed
100. Lim, J. C., Cho, E. H., Kim, J. J., Choi, S. M., Lee, S. Y., Nam, S. S., Park, U. J., Park, S. H. Biological evaluation of 177Lu-labeled DOTA-Ala(SO3H)-Aminooctanoyl-Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH2 for gastrin-releasing peptide receptor-positive prostate tumor targeting. Nucl. Med. Biol. 2015, 42, 131–136. https://doi.org/10.1016/j.nucmedbio.2014.10.007.Suche in Google Scholar PubMed
101. Lim, J. C., Cho, E. H., Kim, J. J., Choi, S. M., Lee, S. Y., Nam, S. S., Park, U. J., Park, S. H. Preclinical pharmacokinetic, biodistribution, imaging and therapeutic efficacy of 177Lu-Labeled glycated bombesin analogue for gastrin-releasing peptide receptor-positive prostate tumor targeting. Nucl. Med. Biol. 2015, 42, 234–241. https://doi.org/10.1016/j.nucmedbio.2014.10.008.Suche in Google Scholar PubMed
102. Lee, J. Y., Hur, M. G., Kong, Y. B., J, L. E., Yang, S. D., Choi, P. S., Park, J. H. Medical radioisotope 89Zr production with RFT-30 cyclotron. J. Radioanal. Nucl. Chem. 2021, 330, 455–460. https://doi.org/10.1007/s10967-021-07884-9.Suche in Google Scholar
103. Lee, J. Y., Vyas, C. K., G, K. G., Choi, P. S., Hur, M. G., Yang, S. D., Kong, Y. B., J., L. E., Park, J. H. Red blood cell membrane bioengineered Zr-89 labelled hollow mesoporous silica nanosphere for overcoming phagocytosis. Sci. Rep. 2019, 9, 7419–7428. https://doi.org/10.1038/s41598-019-43969-y.Suche in Google Scholar PubMed PubMed Central
104. Choi, P. S., Lee, J. Y., Yang, S. D., Park, J. H. Biological behavior of nanoparticles with Zr-89 for cancer target based on their distinct surface composition. J. Mater. Chem. B 2021, 9, 8237–8245. https://doi.org/10.1039/d1tb01473k.Suche in Google Scholar PubMed
105. Lee, J. Y., Vyas, C. K., Kim, B. R., Kim, H. J., Hur, M. G., Yang, S. D., Park, J. H., Kim, S. W. Acid resistant zirconium phosphate for the long term application of 68Ge/68Ga generator system. Appl. Radiat. Isot. 2016, 118, 343–349. https://doi.org/10.1016/j.apradiso.2016.09.025.Suche in Google Scholar PubMed
106. Vyas, C. K., Lee, J. Y., Hur, M. G., Yang, S. D., Kong, Y. B., Lee, E. J., Park, J. H. Chitosan-TiO2 composite: a potential 68Ge/68Ga generator column material. Appl. Radiat. Isot. 2019, 149, 206–213. https://doi.org/10.1016/j.apradiso.2019.04.016.Suche in Google Scholar PubMed
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- 10.1515/ract-2022-2002
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- 10.1515/ract-2022-0001
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- 10.1515/ract-2021-1141
- B. Energy Related Radiochemistry
- 10.1515/ract-2022-0014
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- 10.1515/ract-2022-0003
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- 10.1515/ract-2021-1135
- 10.1515/ract-2022-0004
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- 10.1515/ract-2021-1092
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- 10.1515/ract-2022-0018
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- 10.1515/ract-2021-1124
- 10.1515/ract-2021-1137
- E. Environmental Radioactivity
- 10.1515/ract-2022-0019
Artikel in diesem Heft
- Frontmatter
- 10.1515/ract-2022-2002
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- 10.1515/ract-2022-0001
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- 10.1515/ract-2021-1141
- B. Energy Related Radiochemistry
- 10.1515/ract-2022-0014
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- 10.1515/ract-2022-0003
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- 10.1515/ract-2021-1135
- 10.1515/ract-2022-0004
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- 10.1515/ract-2021-1092
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- 10.1515/ract-2022-0018
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- 10.1515/ract-2021-1124
- 10.1515/ract-2021-1137
- E. Environmental Radioactivity
- 10.1515/ract-2022-0019