Home Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
Article
Licensed
Unlicensed Requires Authentication

Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling

  • Anster Charles , Firouzeh Najafi Khosrashahi , Li Ma , Chathurya Munindradasa , Rebecca Hoerres , John D. Lydon , Steven P. Kelley , James Guthrie , David Rotsch , Dmitri Medvedev , Cathy S. Cutler , Yawen Li , D. Scott Wilbur , Heather M. Hennkens and Silvia S. Jurisson EMAIL logo
Published/Copyright: April 21, 2022

Abstract

Enriched tungsten disulfide (186WS2) was evaluated at increasing proton beam currents (20–50 μA) and times (up to 4 h) on a GE PETtrace cyclotron for production of high specific activity (HSA) 186Re. The HSA 186Re was separated from the irradiated target as [186Re][ReO4] by a liquid–liquid extraction method and radiolabeled with a new N2S2 ligand (222-MAMA-N-ethylpropionate). The enriched 186W was recovered from the extraction process, analyzed for purity and enrichment, and converted back to the disulfide (186WS2). The results demonstrate that the 186WS2 is an easily pressed target material that can withstand relatively high currents and can be readily recovered and recycled. The 186Re produced was isolated in high specific activity and readily formed the radiotracers [186Re][ReO(222-MAMA-N-ethylpropionate)] and [186Re][Re(CO)3(OH2)3] +.


Corresponding author: Silvia S. Jurisson, Department of Chemistry, University of Missouri, Columbia, MO 65211, USA, E-mail:

Funding source: U.S. Department of EnergyOffice of ScienceNuclear PhysicsUniversity of Missouri

Award Identifier / Grant number: Unassigned

Award Identifier / Grant number: Unassigned

Award Identifier / Grant number: Unassigned

Award Identifier / Grant number: Unassigned

Acknowledgments

The authors thank Michael Hall at Essential Isotopes, LLC and Alex Saale at MURR for their assistance with the target irradiations.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully acknowledge support from the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics under grant DE-SC0018662 (SSJ). This work was supported in part by University of Missouri (MU) Tier 2 funds (HMH/SSJ) and MU Life Sciences Fellowship (AC).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kelkar, S. S., Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879; https://doi.org/10.1021/bc200151q.Search in Google Scholar

2. Milenic, D. E., Brady, E. D., Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 2004, 3, 488; https://doi.org/10.1038/nrd1413.Search in Google Scholar

3. Balkin, E. R., Gagnon, K., Dorman, E., Emery, R., Li, Y., Lake Wooten, A., Smith, B. E., Strong, K. T., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process. Radiochim. Acta 2017, 105, 1071; https://doi.org/10.1515/ract-2017-2780.Search in Google Scholar

4. Moustapha, M. E., Ehrhardt, G. J., Smith, C. J., Szajek, L. P., Eckelman, W. C., Jurisson, S. S. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl. Med. Biol. 2006, 33, 81; https://doi.org/10.1016/j.nucmedbio.2005.09.006.Search in Google Scholar

5. Ehrhardt, G. J., Blumer, M. E., Su, F. M., Vanderheyden, J. L., Fritzberg, A. R. Experience with aluminum perrhenate targets for reactor production of high specific activity Re-186. Appl. Radiat. Isot. 1997, 48, 1; https://doi.org/10.1016/s0969-8043(96)00124-8.Search in Google Scholar

6. Fassbender, M. E., Ballard, B., Birnbaum, E. R., Engle, J. W., John, K. D., Maassen, J. R., Nortier, F. M., Lenz, J. W., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Proton irradiation parameters and chemical separation procedure for the bulk production of high-specific-activity 186gRe using WO3 targets. Radiochim. Acta 2013, 101, 339; https://doi.org/10.1524/ract.2013.2031.Search in Google Scholar

7. Lapi, S., Mills, W. J., Wilson, J., McQuarrie, S., Publicover, J., Schueller, M., Schyler, D., Ressler, J. J., Ruth, T. J. Production cross-sections of 181–186Re isotopes from proton bombardment of natural tungsten. Appl. Radiat. Isot. 2007, 65, 345; https://doi.org/10.1016/j.apradiso.2006.08.015.Search in Google Scholar PubMed

8. Bonardi, M. L., Groppi, F., Manenti, S., Persico, E., Gini, L. Production study of high specific activity NCA Re-186g by proton and deuteron cyclotron irradiation. J. Radioanal. Nucl. Chem. 2010, 286, 1; https://doi.org/10.1007/s10967-009-0380-4.Search in Google Scholar

9. Alekseev, I. E., Lazarev, V. V. Cyclotron production and radiochemical isolation of the therapeutical radionuclide 186Re. Radiochemistry 2006, 48, 497; https://doi.org/10.1134/s1066362206050171.Search in Google Scholar

10. Balkin, E. R., Gagnon, K., Strong, K. T., Smith, B. E., Dorman, E. F., Emery, R. C., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S., Wilbur, D. S. Deuteron irradiation of W and WO3 for production of high specific activity 186Re: challenges associated with thick target preparation. Appl. Radiat. Isot. 2016, 115, 197; https://doi.org/10.1016/j.apradiso.2016.06.021.Search in Google Scholar PubMed

11. Gott, M. D., Hayes, C. R., Wycoff, D. E., Balkin, E. R., Smith, B. E., Pauzauskie, P. J., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Wilbur, D. S., Jurisson, S. S. Accelerator-based production of the 99mTc-186Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OsS2). Appl. Radiat. Isot. 2016, 114, 159; https://doi.org/10.1016/j.apradiso.2016.05.024.Search in Google Scholar PubMed

12. Lei, W., Xiao, J.-L., Liu, H.-P., Jia, Q.-L., Zhang, H.-J. Tungsten disulfide: synthesis and applications in electrochemical energy storage and conversion. Tungsten 2020, 2, 217; https://doi.org/10.1007/s42864-020-00054-6.Search in Google Scholar

13. Zhao, G., Wu, Y., Shao, Y., Hao, X. Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale 2016, 8, 5407; https://doi.org/10.1039/c5nr07950k.Search in Google Scholar PubMed

14. Tan, C., Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713; https://doi.org/10.1039/c4cs00182f.Search in Google Scholar PubMed

15. Goethals, P.-E., Zimmermann, R. Cyclotrons Used in Nuclear Medicine World Market Report & Directory, 2015; pp 74–185. https://www.researchgate.net/figure/Distinction-of-cyclotron-types-Goethals-and-Zimmermann-2015_tbl2_323297502.Search in Google Scholar

16. Demoin, D. W., Dame, A. N., Minard, W. D., Gallazzi, F., Seickman, G. L., Rold, T. L., Bernskoetter, N., Fassbender, M. E., Hoffman, T. J., Deakyne, C. A., Jurisson, S. S. Monooxorhenium(V) complexes with 222-N2S2 MAMA ligands for bifunctional chelator agents: syntheses and preliminary in vivo evaluation. Nucl. Med. Biol. 2016, 43, 802; https://doi.org/10.1016/j.nucmedbio.2016.08.017.Search in Google Scholar PubMed PubMed Central

17. Ziegler, J. F., Ziegler, M. D., Biersack, J. P. SRIM - the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B. 2010, 268, 1818; https://doi.org/10.1016/j.nimb.2010.02.091.Search in Google Scholar

18. Makris, G., Radford, L. L., Kuchuk, M., Gallazzi, F., Jurisson, S. S., Smith, C. J., Hennkens, H. M. NOTA and NODAGA [99mTc]Tc- and [186Re]Re-tricarbonyl complexes: radiochemistry and first example of a [99mTc]Tc-NODAGA somatostatin receptor-targeting bioconjugate. Bioconjugate Chem. 2018, 29, 4040; https://doi.org/10.1021/acs.bioconjchem.8b00670.Search in Google Scholar PubMed

19. Tárkányi, F., Hermanne, A., Takács, S., Ditrói, F., Kovalev, F., Ignatyuk, A. V. New measurement and evaluation of the excitation function of the 186W(p, n) nuclear reaction for production of the therapeutic radioisotope 186Re. Nucl. Instrum. Methods Phys. Res. B. 2007, 264, 389.10.1016/j.nimb.2007.09.026Search in Google Scholar

20. Shigeta, N., Matsuoka, H., Osa, A., Koizumi, M., Izumo, M., Kobayashi, K., Hashimoto, K., Sekine, T., Lambrecht, R. M. Production method of no-carrier-added 186Re. J. Radioanal. Nucl. Chem. 1996, 205, 85; https://doi.org/10.1007/bf02040553.Search in Google Scholar

21. Qiao, Z., Xu, J., Gonzalez, R., Miao, Y. Novel [99mTc]-Tricarbonyl-NOTA-Conjugated lactam-cyclized alpha-MSH peptide with enhanced melanoma uptake and reduced renal uptake. Mol. Pharm. 2020, 17, 3581; https://doi.org/10.1021/acs.molpharmaceut.0c00606.Search in Google Scholar PubMed PubMed Central

22. Sharma, P., Kumar, A., Bankuru, S., Chakraborty, J., Puravankara, S. Large-scale surfactant-free synthesis of WS2 nanosheets: an investigation into the detailed reaction chemistry of colloidal precipitation and their application as an anode material for litium-ion and sodium-ion batteries. New J. Chem. 2020, 44, 1594; https://doi.org/10.1039/c9nj04662c.Search in Google Scholar

23. Gajic, N., Kamberovic, Z., Andic, Z., Trpcevska, J., Plesingerova, B., Korac, M. Synthesis of tribological WS2 powder from WO3 prepared by ultrasonic spray pyrolysis (USP). Metals 2019, 9, 277.10.3390/met9030277Search in Google Scholar

24. http://www.tungsten-powder.com/tungsten-disulfide-producing-method.html.Search in Google Scholar

25. Alharbi, A., Shahrjerdi, D. Electronic properties of monolayer tungsten disulfide grown by chemical vapor deposition. Appl. Phys. Lett. 2016, 109, 193502; https://doi.org/10.1063/1.4967188.Search in Google Scholar

26. Hussain, M., Sudar, S., Aslam, M. N., Malik, A. A., Ahmad, R., Qaim, S. M. Evaluation of charged particle induced reaction cross section data for production of the important therapeutic radionuclide 186Re. Radiochim. Acta 2010, 98, 385; https://doi.org/10.1524/ract.2010.1733.Search in Google Scholar

27. O’Neil, J. P., Wilson, S. R., Katzenellenbogen, J. A. Preparation and structural characterization of monoamine-monoamide bis(thiol) oxo complexes of technetium(V) and rhenium(V). Inorg. Chem. 1994, 33, 319.10.1021/ic00080a022Search in Google Scholar

28. Madras, B. K., Jones, A. G., Mahmood, A., Zimmerman, R. E., Garada, B., Holman, B. L., Davison, A., Blundell, P., Meltzer, P. C. Technepine: a high-affinity 99mtechnetium probe to label the dopamine transporter in brain by SPECT imaging. Synapse 1996, 22, 239; https://doi.org/10.1002/(sici)1098-2396(199603)22:3<239::aid-syn6>3.0.co;2-d.10.1002/(SICI)1098-2396(199603)22:3<239::AID-SYN6>3.0.CO;2-DSearch in Google Scholar

29. Meegalla, S. K., Plössl, K., Kung, M.-P., Chumpradit, S., Stevenson, D. A., Kushner, S. A., McElgin, W. T., Mozley, P. D., Kung, H. F. Synthesis and characterization of technetium-99m-labeled tropanes as dopamine transporter-imaging agents. J. Med. Chem. 1997, 40, 9; https://doi.org/10.1021/jm960532j.Search in Google Scholar

30. Meltzer, P. C., Blundell, P., Jones, A. G., Mahmood, A., Garada, B., Zimmerman, R. E., Davison, A., Holman, B. L., Madras, B. K. A technetium-99m SPECT imaging agent which targets the dopamine transporter in primate brain. J. Med. Chem. 1997, 40, 1835; https://doi.org/10.1021/jm960868t.Search in Google Scholar

31. Schibli, R., Schwarzbach, R., Alberto, R., Ortner, K., Schmalle, H., Dumas, C., Egli, A., Schubiger, P. A. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjugate Chem. 2002, 13, 750; https://doi.org/10.1021/bc015568r.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2021-1138).


Received: 2021-12-14
Revised: 2022-01-28
Accepted: 2022-01-31
Published Online: 2022-04-21
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1138/pdf
Scroll to top button