Abstract
This review provides an essential overview on the progress of rapidly-developing China’s radiopharmaceuticals in recent years (2014–2021). Our discussion reflects on efforts to develop potential, preclinical, and in-clinical radiopharmaceuticals including the following areas: (1) brain imaging agents, (2) cardiovascular imaging agents, (3) infection and inflammation imaging agents, (4) tumor radiopharmaceuticals, and (5) boron delivery agents (a class of radiopharmaceutical prodrug) for neutron capture therapy. Especially, the progress in basic research, including new radiolabeling methodology, is highlighted from a standpoint of radiopharmaceutical chemistry. Meanwhile, we briefly reflect on the recent major events related to radiopharmaceuticals along with the distribution of major R&D forces (universities, institutions, facilities, and companies), clinical study status, and national regulatory supports. We conclude with a brief commentary on remaining limitations and emerging opportunities for China’s radiopharmaceuticals.
Funding source: Beijing Municipal Natural Science Foundation http://dx.doi.org/10.13039/501100005089
Award Identifier / Grant number: Z200018
Funding source: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
Award Identifier / Grant number: U1867209
Award Identifier / Grant number: 21778003
Funding source: Ministry of Science and Technology of the People’s Republic of China http://dx.doi.org/10.13039/501100002855
Award Identifier / Grant number: 2017YFA0506300
Funding source: Li Ge-Zhao Ning Life Science Youth Research Foundation
Award Identifier / Grant number: LGZNQN202004
Funding source: China Postdoctoral Science Foundation http://dx.doi.org/10.13039/501100002858
Award Identifier / Grant number: 2020M680241
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors are grateful for financial support from the Beijing Municipal Natural Science Foundation (Z200018), the National Natural Science Foundation of China (Grants U1867209 and 21778003), the Ministry of Science and Technology of the People’s Republic of China (2017YFA0506300), the Li Ge-Zhao Ning Life Science Youth Research Foundation (LGZNQN202004) to Z. L., and the China Postdoctoral Science Foundation (2020M680241) to X.-Y. C.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lewis, J. S., Windhorst, A. D., Zeglis, B. M., Eds. Radiopharmaceutical Chemistry; Springer: Cham, 2019.10.1007/978-3-319-98947-1Suche in Google Scholar
2. Sgouros, G., Bodei, L., McDevitt, M. R., Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589; https://doi.org/10.1038/s41573-020-0073-9.Suche in Google Scholar PubMed PubMed Central
3. Jing Wang, S. L. A brief report on the results of the national survey of nuclear medicine in 2020 (in Chinese). Chin. J. Nucl. Med. Mol. Imaging 2020, 40, 747.Suche in Google Scholar
4. Shi, W. Q., Zhao, Y. L., Chai, Z. F. Nuclear and radiochemistry in China: present status and future perspectives. Radiochim. Acta 2012, 100, 529; https://doi.org/10.1524/ract.2012.1955.Suche in Google Scholar
5. Jia, H.-M., Liu, B.-L. Radiopharmaceuticals in China: current status and prospects. Radiochim. Acta 2014, 102, 53; https://doi.org/10.1515/ract-2014-2100.Suche in Google Scholar
6. Rongfu Wang, C. W. The clinical application value of radionuclides and radiolabeled compounds (in Chinese). J. Isot. 2019, 32, 195.Suche in Google Scholar
7. Jinming Zhang, J. D. Preparation of radiophamaceuticals in China: current status and prospects (in Chinese). J. Isot. 2019, 32, 178.Suche in Google Scholar
8. Rong-fu Wang, Y.-j. D. Current situation and challenge of clinical application of Small molecular peptide based radiopharmaceuticals (in Chinese). J. Nucl. Radiochem. 2020, 42, 129.Suche in Google Scholar
9. Hu, J., Li, H., Sui, Y., Du, J. Current status and future perspective of radiopharmaceuticals in China. Eur. J. Nucl. Med. Mol. Imag. 2021; https://doi.org/10.1007/s00259-021-05615-6.Suche in Google Scholar PubMed PubMed Central
10. Hamacher, K., Coenen, H. H., Stöcklin, G. Efficient stereospecific synthesis of No-Carrier-Added 2-[18F]-Fluoro-2-Deoxy-D-Glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med. 1986, 27, 235.Suche in Google Scholar
11. Hou, J., Long, T., Hu, S. Application of 18F-FDG PET/CT in necrobiotic xanthogranuloma involving multiple organs. Eur. J. Nucl. Med. Mol. Imag. 2021, 48, 321; https://doi.org/10.1007/s00259-020-04841-8.Suche in Google Scholar PubMed
12. Zhu, H., Zhang, H., Zhou, N., Ding, J., Jiang, J., Liu, T., Liu, Z., Wang, F., Zhang, Q., Zhang, Z., Yan, S., Li, L., Benabdallah, N., Jin, H., Liu, Z., Cai, L., Thorek, D. L. J., Yang, X., Yang, Z. Molecular PET/CT profiling of ACE2 expression in vivo: implications for infection and outcome from SARS-CoV-2. Adv. Sci. 2021, 8, e2100965; https://doi.org/10.1002/advs.202100965.Suche in Google Scholar PubMed PubMed Central
13. Wang, S., Zhou, X., Xu, X., Ding, J., Liu, S., Hou, X., Li, N., Zhu, H., Yang, Z. Clinical translational evaluation of Al(18)F-NOTA-FAPI for fibroblast activation protein-targeted tumour imaging. Eur. J. Nucl. Med. Mol. Imag. 2021, 48, 4259; https://doi.org/10.1007/s00259-021-05470-5.Suche in Google Scholar PubMed
14. Zhao, L., Niu, B., Fang, J., Pang, Y., Li, S., Xie, C., Sun, L., Zhang, X., Guo, Z., Lin, Q., Chen, H. Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer. J. Nucl. Med. 2021, 121, 263016. jnumed.10.2967/jnumed.121.263016Suche in Google Scholar PubMed PubMed Central
15. Hu, K., Wang, L., Wu, H., Huang, S., Tian, Y., Wang, Q., Xiao, C., Han, Y., Tang, G. [18F]FAPI-42 PET imaging in cancer patients: optimal acquisition time, biodistribution, and comparison with [68Ga]Ga-FAPI-04. Eur. J. Nucl. Med. Mol. Imag. 2021; https://doi.org/10.1007/s00259-021-05646-z.Suche in Google Scholar PubMed
16. Dai, D., Rollo, F. D., Bryant, J., Kim, E. E. Noninferiority of (99m)Tc-Ethylenedicysteine-Glucosamine as an alternative analogue to (18)F-fluorodeoxyglucose in the detection and staging of non-small cell lung cancer. Contrast Media Mol. Imaging 2018, 2018, 8969714; https://doi.org/10.1155/2018/8969714.Suche in Google Scholar PubMed PubMed Central
17. Xu, Y., Wang, L., Pan, D., Yu, C., Mi, B., Huang, Q., Sheng, J., Yan, J., Wang, X., Yang, R., Yang, M. PET imaging of a (68)Ga labeled modified HER2 affibody in breast cancers: from xenografts to patients. Br. J. Radiol. 2019, 92, 20190425; https://doi.org/10.1259/bjr.20190425.Suche in Google Scholar PubMed PubMed Central
18. Mi, B., Yu, C., Pan, D., Yang, M., Wan, W., Niu, G., Chen, X. Pilot prospective evaluation of (18)F-alfatide II for detection of skeletal metastases. Theranostics 2015, 5, 1115; https://doi.org/10.7150/thno.12938.Suche in Google Scholar PubMed PubMed Central
19. Zheng, S., Chen, Z., Huang, C., Chen, Y., Miao, W. [(99m)Tc]3PRGD(2) for integrin receptor imaging of esophageal cancer: a comparative study with [(18)F]FDG PET/CT. Ann. Nucl. Med. 2019, 33, 135; https://doi.org/10.1007/s12149-018-1315-3.Suche in Google Scholar PubMed
20. Li, Z., Kong, Z., Chen, J., Li, J., Li, N., Yang, Z., Wang, Y., Liu, Z. 18F-Boramino acid PET/CT in healthy volunteers and glioma patients. Eur. J. Nucl. Med. Mol. Imag. 2021, 48, 3113; https://doi.org/10.1007/s00259-021-05212-7.Suche in Google Scholar PubMed
21. Xing, Y., Chand, G., Liu, C., Cook, G. J. R., O’Doherty, J., Zhao, L., Wong, N. C. L., Meszaros, L. K., Ting, H. H., Zhao, J. Early phase I study of a (99m)Tc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer. J. Nucl. Med. 2019, 60, 1213; https://doi.org/10.2967/jnumed.118.224170.Suche in Google Scholar PubMed PubMed Central
22. Zhang, X., Wu, Y., Zeng, Q., Xie, T., Yao, S., Zhang, J., Cui, M. Synthesis, preclinical evaluation, and first-in-human PET study of quinoline-containing PSMA tracers with decreased renal excretion. J. Med. Chem. 2021, 64, 4179; https://doi.org/10.1021/acs.jmedchem.1c00117.Suche in Google Scholar PubMed
23. Liu, T., Liu, C., Xu, X., Liu, F., Guo, X., Li, N., Wang, X., Yang, J., Yang, X., Zhu, H., Yang, Z. Preclinical evaluation and pilot clinical study of Al18F-PSMA-BCH for prostate cancer PET imaging. J. Nucl. Med. 2019, 60, 1284; https://doi.org/10.2967/jnumed.118.221671.Suche in Google Scholar PubMed
24. Duan, X., Cao, Z., Zhu, H., Liu, C., Zhang, X., Zhang, J., Ren, Y., Liu, F., Cai, X., Guo, X., Xi, Z., Pomper, M. G., Yang, Z., Fan, Y., Yang, X. 68Ga-labeled ODAP-Urea-based PSMA agents in prostate cancer: first-in-human imaging of an optimized agent. Eur. J. Nucl. Med. Mol. Imag. 2022, 49, 1030; https://doi.org/10.1007/s00259-021-05486-x.Suche in Google Scholar PubMed
25. Yao, S., Xing, H., Zhu, W., Wu, Z., Zhang, Y., Ma, Y., Liu, Y., Huo, L., Zhu, Z., Li, Z., Li, F. Infection imaging with (18)F-FDS and first-in-human evaluation. Nucl. Med. Biol. 2016, 43, 206; https://doi.org/10.1016/j.nucmedbio.2015.11.008.Suche in Google Scholar PubMed
26. Liu, Q., Cheng, Y., Zang, J., Sui, H., Wang, H., Jacobson, O., Zhu, Z., Chen, X. Dose escalation of an Evans blue-modified radiolabeled somatostatin analog (177)Lu-DOTA-EB-TATE in the treatment of metastatic neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imag. 2020, 47, 947; https://doi.org/10.1007/s00259-019-04530-1.Suche in Google Scholar PubMed PubMed Central
27. Zhang, X., Yu, P., Yang, Y., Hou, Y., Peng, C., Liang, Z., Lu, J., Chen, B., Dai, J., Liu, B., Cui, M. Tc-labeled 2-arylbenzothiazoles: aβ imaging probes with favorable brain pharmacokinetics for single-photon emission computed tomography. Bioconjugate Chem. 2016, 27, 2493; https://doi.org/10.1021/acs.bioconjchem.6b00444.Suche in Google Scholar PubMed
28. Zhou, K., Yang, F., Li, Y., Chen, Y., Zhang, X., Zhang, J., Wang, J., Dai, J. Synthesis and evaluation of fluorine-18 labeled 2-phenylquinoxaline derivatives as potential tau imaging agents. Mol. Pharm. 2021, 18, 1176; https://doi.org/10.1021/acs.molpharmaceut.0c01078.Suche in Google Scholar PubMed
29. Chen, Y. F., Bian, J., Zhang, P., Bu, L. L., Shen, Y., Yu, W. B., Lu, X. H., Lin, X., Ye, D. Y., Wang, J., Chu, Y. Design, synthesis and identification of N, N-dibenzylcinnamamide (DBC) derivatives as novel ligands for α-synuclein fibrils by SPR evaluation system. Bioorg. Med. Chem. 2020, 28, 115358; https://doi.org/10.1016/j.bmc.2020.115358.Suche in Google Scholar PubMed
30. Li, X., Chen, Z., Tang, J., Liu, C., Zou, P., Huang, H., Tan, C., Yu, H. Synthesis and biological evaluation of 10-(11) C-dihydrotetrabenazine as a vesicular monoamine transporter 2 radioligand. Arch. Pharm. (Weinheim) 2014, 347, 313; https://doi.org/10.1002/ardp.201300307.Suche in Google Scholar PubMed
31. Cao, S., Tang, J., Liu, C., Fang, Y., Ji, L., Xu, Y., Chen, Z. Synthesis and biological evaluation of [(18)F]FECNT-d(4) as a novel PET agent for dopamine transporter imaging. Mol. Imag. Biol. 2021, 23, 733; https://doi.org/10.1007/s11307-021-01603-2.Suche in Google Scholar PubMed
32. He, Y., Xie, F., Ye, J., Deuther-Conrad, W., Cui, B., Wang, L., Lu, J., Steinbach, J., Brust, P., Huang, Y., Lu, J., Jia, H. 1-(4-[18F]Fluorobenzyl)-4-[(tetrahydrofuran-2-yl)methyl]piperazine: a novel suitable radioligand with low lipophilicity for imaging σ(1) receptors in the brain. J. Med. Chem. 2017, 60, 4161; https://doi.org/10.1021/acs.jmedchem.6b01723.Suche in Google Scholar PubMed
33. Jia, H., Cai, Z. Positron emission tomography imaging evaluation of a novel (18)F-labeled sigma-1 receptor radioligand in cynomolgus monkeys. ACS Chem. Neurosci. 2020, 11, 1673; https://doi.org/10.1021/acschemneuro.0c00171.Suche in Google Scholar PubMed
34. Siegel, R. L., Miller, K. D., Fuchs, H. E., Jemal, A. Cancer statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7; https://doi.org/10.3322/caac.21654.Suche in Google Scholar PubMed
35. Li, L., Zhang, D., Yang, S., Song, S., Li, J., Wang, Q., Wang, C., Feng, Y., Ni, Y., Zhang, J., Liu, W., Yin, Z. Effects of glycosylation on biodistribution and imaging quality of necrotic myocardium of iodine-131-labeled sennidins. Mol. Imag. Biol. 2016, 18, 877; https://doi.org/10.1007/s11307-016-0961-x.Suche in Google Scholar PubMed
36. Luo, Q., Jin, Q., Su, C., Zhang, D., Jiang, C., Fish, A. F., Feng, Y., Ni, Y., Zhang, J., Yin, Z. Radiolabeled rhein as small-molecule necrosis avid agents for imaging of necrotic myocardium. Anal. Chem. 2017, 89, 1260; https://doi.org/10.1021/acs.analchem.6b03959.Suche in Google Scholar PubMed
37. Zhao, Z., Yu, Q., Mou, T., Liu, C., Yang, W., Fang, W., Peng, C., Lu, J., Liu, Y., Zhang, X. Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging. Mol. Pharm. 2014, 11, 3823; https://doi.org/10.1021/mp500216g.Suche in Google Scholar PubMed
38. Mou, T., Zhao, Z., You, L., Wang, Q., Fang, W., Lu, J., Peng, C., Zhang, X. Synthesis and bioevaluation of 4-chloro-2-tert-butyl-5-[2-[[1-[2-[(18)F]fluroethyl]-1H-1,2,3-triazol-4-yl]methyl]phenylmethoxy]-3(2H)-pyridazinone as potential myocardial perfusion imaging agent with PET. J. Label. Compd. Radiopharm. 2015, 58, 349; https://doi.org/10.1002/jlcr.3310.Suche in Google Scholar PubMed
39. Li, J., Peng, C., Guo, Z., Shi, C., Zhuang, R., Hong, X., Wang, X., Xu, D., Zhang, P., Zhang, D., Liu, T., Su, X., Zhang, X. Radioiodinated pentixather for SPECT imaging of expression of the chemokine receptor CXCR4 in rat myocardial-infarction-reperfusion models. Anal. Chem. 2018, 90, 9614; https://doi.org/10.1021/acs.analchem.8b02553.Suche in Google Scholar PubMed
40. Weinstein, E. A., Ordonez, A. A., DeMarco, V. P., Murawski, A. M., Pokkali, S., MacDonald, E. M., Klunk, M., Mease, R. C., Pomper, M. G., Jain, S. K. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Sci. Transl. Med. 2014, 6, 259ra146. https://doi.org/10.1126/scitranslmed.3009815.Suche in Google Scholar PubMed PubMed Central
41. Zhu, W., Yao, S., Xing, H., Zhang, H., Tai, Y. C., Zhang, Y., Liu, Y., Ma, Y., Wu, C., Wang, H., Li, Z., Wu, Z., Zhu, Z., Li, F., Huo, L. Biodistribution and radiation dosimetry of the enterobacteriaceae-specific imaging probe [(18)F]fluorodeoxysorbitol determined by PET/CT in healthy human volunteers. Mol. Imag. Biol. 2016, 18, 782; https://doi.org/10.1007/s11307-016-0946-9.Suche in Google Scholar PubMed
42. Fu, Z., Lin, Q., Hu, B., Zhang, Y., Chen, W., Zhu, J., Zhao, Y., Choi, H. S., Shi, H., Cheng, D. P2X7 PET radioligand (18)F-PTTP for differentiation of lung tumor from inflammation. J. Nucl. Med. 2019, 60, 930; https://doi.org/10.2967/jnumed.118.222547.Suche in Google Scholar PubMed PubMed Central
43. Fang, S., Jiang, Y., Xiao, D., Zhang, X., Gan, Q., Ruan, Q., Zhang, J. Synthesis and evaluation of novel norfloxacin isonitrile (99m)Tc complexes as potential bacterial infection imaging agents. Pharmaceutics 2021, 13, 518; https://doi.org/10.3390/pharmaceutics13040518.Suche in Google Scholar PubMed PubMed Central
44. Jiang, Y., Fang, S., Zhang, X., Feng, J., Ruan, Q., Zhang, J. Radiolabeling and evaluation of a novel [(99m)TcN](2+) complex with deferoxamine dithiocarbamate as a potential agent for bacterial infection imaging. Bioorg. Med. Chem. Lett. 2021, 43, 128102; https://doi.org/10.1016/j.bmcl.2021.128102.Suche in Google Scholar PubMed
45. Afshar-Oromieh, A., Babich, J. W., Kratochwil, C., Giesel, F. L., Eisenhut, M., Kopka, K., Haberkorn, U. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J. Nucl. Med. 2016, 57, 79S.https://doi.org/10.2967/jnumed.115.170720.Suche in Google Scholar PubMed
46. Xu, X., Zhang, J., Hu, S., He, S., Bao, X., Ma, G., Luo, J., Cheng, J., Zhang, Y. 99mTc-labeling and evaluation of a HYNIC modified small-molecular inhibitor of prostate-specific membrane antigen. Nucl. Med. Biol. 2017, 48, 69; https://doi.org/10.1016/j.nucmedbio.2017.01.010.Suche in Google Scholar PubMed
47. Liu, C., Zhu, Y., Su, H., Xu, X., Zhang, Y., Song, S., Wang, B., Ye, D., Hu, S. Preliminary results of targeted prostate-specific membrane antigen imaging in evaluating the efficacy of a novel hormone agent in metastatic castration-resistant prostate cancer. Cancer Med. 2020, 9, 3278; https://doi.org/10.1002/cam4.2964.Suche in Google Scholar PubMed PubMed Central
48. Benešová, M., Schäfer, M., Bauder-Wüst, U., Afshar-Oromieh, A., Kratochwil, C., Mier, W., Haberkorn, U., Kopka, K., Eder, M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med. 2015, 56, 914.10.2967/jnumed.114.147413Suche in Google Scholar PubMed
49. Duan, X. J., Liu, F. T., Kwon, H., Byun, Y., Minn, I., Cai, X. K., Zhang, J. M., Pomper, M. G., Yang, Z., Xi, Z., Yang, X. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic acid as a novel PSMA targeting scaffold for prostate cancer imaging. J. Med. Chem. 2020, 63, 3563; https://doi.org/10.1021/acs.jmedchem.9b02031.Suche in Google Scholar PubMed
50. Yao, X., Zha, Z., Ploessl, K., Choi, S. R., Zhao, R., Alexoff, D., Zhu, L., Kung, H. F. Synthesis and evaluation of novel radioiodinated PSMA targeting ligands for potential radiotherapy of prostate cancer. Bioorg. Med. Chem. 2020, 28, 115319; https://doi.org/10.1016/j.bmc.2020.115319.Suche in Google Scholar PubMed
51. Giesel, F. L., Hadaschik, B., Cardinale, J., Radtke, J., Vinsensia, M., Lehnert, W., Kesch, C., Tolstov, Y., Singer, S., Grabe, N., Duensing, S., Schäfer, M., Neels, O. C., Mier, W., Haberkorn, U., Kopka, K., Kratochwil, C. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imag. 2017, 44, 678; https://doi.org/10.1007/s00259-016-3573-4.Suche in Google Scholar PubMed PubMed Central
52. Zhang, X. J., Wu, Y. T., Zeng, Q., Xie, T. X., Yao, S. L., Zhang, J. M., Cui, M. C. Synthesis, preclinical evaluation, and first-in-human PET study of quinoline-containing PSMA tracers with decreased renal excretion. J. Med. Chem. 2021, 64, 4179; https://doi.org/10.1021/acs.jmedchem.1c00117.Suche in Google Scholar PubMed
53. Liu, R., Li, H., Liu, L., Yu, J. P., Ren, X. B. Fibroblast activation protein A potential therapeutic target in cancer. Cancer Biol. Ther. 2012, 13, 123; https://doi.org/10.4161/cbt.13.3.18696.Suche in Google Scholar PubMed
54. Lindner, T., Loktev, A., Altmann, A., Giesel, F., Kratochwil, C., Debus, J., Jäger, D., Mier, W., Haberkorn, U. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med. 2018, 59, 1415; https://doi.org/10.2967/jnumed.118.210443.Suche in Google Scholar PubMed
55. Wang, S., Zhou, X., Xu, X., Ding, J., Liu, S., Hou, X., Li, N., Zhu, H., Yang, Z. Clinical translational evaluation of Al18F-NOTA-FAPI for fibroblast activation protein-targeted tumour imaging. Eur. J. Nucl. Med. Mol. Imag. 2021, 48, 4259; https://doi.org/10.1007/s00259-021-05470-5.Suche in Google Scholar PubMed
56. Xu, M., Zhang, P., Ding, J., Chen, J., Huo, L., Liu, Z. Albumin binder–conjugated fibroblast activation protein inhibitor radiopharmaceuticals for cancer therapy. J. Nucl. Med. 2021, 121, 262533. jnumed.10.2967/jnumed.121.262533Suche in Google Scholar PubMed PubMed Central
57. Loktev, A., Lindner, T., Burger, E.-M., Altmann, A., Giesel, F., Kratochwil, C., Debus, J., Marmé, F., Jäger, D., Mier, W., Haberkorn, U. Development of fibroblast activation protein–targeted radiotracers with improved tumor retention. J. Nucl. Med. 2019, 60, 1421; https://doi.org/10.2967/jnumed.118.224469.Suche in Google Scholar PubMed PubMed Central
58. Desgrosellier, J. S., Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 2010, 10, 9; https://doi.org/10.1038/nrc2748.Suche in Google Scholar PubMed PubMed Central
59. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996, 12, 697; https://doi.org/10.1146/annurev.cellbio.12.1.697.Suche in Google Scholar PubMed
60. Liu, Z., Liu, H., Ma, T., Sun, X., Shi, J., Jia, B., Sun, Y., Zhan, J., Zhang, H., Zhu, Z., Wang, F. Integrin αγβ6–targeted SPECT imaging for pancreatic cancer detection. J. Nucl. Med. 2014, 55, 989; https://doi.org/10.2967/jnumed.113.132969.Suche in Google Scholar PubMed
61. Feng, X., Wang, Y., Lu, D., Xu, X., Zhou, X., Zhang, H., Zhang, T., Zhu, H., Yang, Z., Wang, F., Li, N., Liu, Z. Clinical translation of a 68Ga-labeled integrin αγβ6–targeting cyclic radiotracer for PET imaging of pancreatic cancer. J. Nucl. Med. 2020, 61, 1461; https://doi.org/10.2967/jnumed.119.237347.Suche in Google Scholar PubMed PubMed Central
62. Gao, H., Luo, C., Yang, G., Du, S., Li, X., Zhao, H., Shi, J., Wang, F. Improved in vivo targeting capability and pharmacokinetics of 99mTc-labeled isoDGR by dimerization and albumin-binding for glioma imaging. Bioconjugate Chem. 2019, 30, 2038; https://doi.org/10.1021/acs.bioconjchem.9b00323.Suche in Google Scholar PubMed
63. Fernandez, M., Javaid, F., Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 2018, 9, 790; https://doi.org/10.1039/c7sc04004k.Suche in Google Scholar PubMed PubMed Central
64. Guo, Z., Gao, M., Song, M., Shi, C., Zhang, P., Xu, D., You, L., Zhuang, R., Su, X., Liu, T., Du, J., Zhang, X. Synthesis and evaluation of 99mTc-labeled dimeric folic acid for FR-targeting. Molecules 2016, 21, 817; https://doi.org/10.3390/molecules21060817.Suche in Google Scholar PubMed PubMed Central
65. Guo, Z., You, L., Shi, C., Song, M., Gao, M., Xu, D., Peng, C., Zhuang, R., Liu, T., Su, X., Du, J., Zhang, X. Development of a new FR-targeting agent 99mTc-HYNFA with improved imaging contrast and comparison of multimerization and/or PEGylation strategies for radio-folate modification. Mol. Pharm. 2017, 14, 3780; https://doi.org/10.1021/acs.molpharmaceut.7b00536.Suche in Google Scholar PubMed
66. Song, M., Guo, Z., Gao, M., Shi, C., Xu, D., You, L., Wu, X., Su, X., Zhuang, R., Pan, W., Liu, T., Zhang, X. Synthesis and preliminary evaluation of a 99mTc-labeled folate-PAMAM dendrimer for FR imaging. Chem. Biol. Drug Des. 2017, 89, 755; https://doi.org/10.1111/cbdd.12899.Suche in Google Scholar PubMed
67. Wen, X., Shi, C., Yang, L., Zeng, X., Lin, X., Huang, J., Li, Y., Zhuang, R., Zhu, H., Guo, Z., Zhang, X. A radioiodinated FR-β-targeted tracer with improved pharmacokinetics through modification with an albumin binder for imaging of macrophages in AS and NAFL. Eur. J. Nucl. Med. Mol. Imag. 2022, 49, 503; https://doi.org/10.1007/s00259-021-05447-4.Suche in Google Scholar PubMed
68. Feng, J., Zhang, X., Ruan, Q., Jiang, Y., Zhang, J. Preparation and evaluation of novel folate isonitrile 99mTc complexes as potential tumor imaging agents to target folate receptors. Molecules 2021, 26, 4552; https://doi.org/10.3390/molecules26154552.Suche in Google Scholar PubMed PubMed Central
69. Li, L., Wu, Y., Wang, Z., Jia, B., Hu, Z., Dong, C., Wang, F. SPECT/CT imaging of the novel HER2-targeted peptide probe 99mTc-HYNIC-H6F in breast cancer mouse models. J. Nucl. Med. 2017, 58, 821; https://doi.org/10.2967/jnumed.116.183863.Suche in Google Scholar PubMed
70. Guo, X., Zhu, H., Zhou, N., Chen, Z., Liu, T., Liu, F., Xu, X., Jin, H., Shen, L., Gao, J., Yang, Z. Noninvasive detection of HER2 expression in gastric cancer by 64Cu-NOTA-Trastuzumab in PDX mouse model and in patients. Mol. Pharm. 2018, 15, 5174; https://doi.org/10.1021/acs.molpharmaceut.8b00673.Suche in Google Scholar PubMed
71. Tang, L. G., Peng, C. Y., Tang, B. W., Li, Z. J., Wang, X. Y., Li, J. D., Gao, F., Huang, L. M., Xu, D., Zhang, P., Zhuang, R. Q., Su, X. H., Chen, X. Y., Zhang, X. Z. Radioiodinated small-molecule tyrosine kinase inhibitor for HER2-selective SPECT imaging. J. Nucl. Med. 2018, 59, 1386; https://doi.org/10.2967/jnumed.117.205088.Suche in Google Scholar PubMed PubMed Central
72. Xing, Y., Chand, G., Liu, C., Cook, G. J. R., O’Doherty, J., Zhao, L., Wong, N. C. L., Meszaros, L. K., Ting, H. H., Zhao, J. Early phase I study of a 99mTc-labeled anti–programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non–small cell lung cancer. J. Nucl. Med. 2019, 60, 1213; https://doi.org/10.2967/jnumed.118.224170.Suche in Google Scholar PubMed PubMed Central
73. Lv, G., Sun, X., Qiu, L., Sun, Y., Li, K., Liu, Q., Zhao, Q., Qin, S., Lin, J. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J. Nucl. Med. 2020, 61, 117; https://doi.org/10.2967/jnumed.119.226712.Suche in Google Scholar PubMed PubMed Central
74. Zhou, X., Jiang, J., Yang, X., Liu, T., Ding, J., Nimmagadda, S., Pomper, M. G., Zhu, H., Zhao, J., Yang, Z., Li, N. First-in-human evaluation of a PD-L1-binding peptide radiotracer in non-small cell lung cancer patients with PET. J. Nucl. Med. 2021, 121, 262045. jnumed; https://doi.org/10.2967/jnumed.121.262045.Suche in Google Scholar PubMed PubMed Central
75. Miao, Y. X., Lv, G. C., Chen, Y. F., Qiu, L., Xie, M. H., Lin, J. G. One-step radiosynthesis and initial evaluation of a small molecule PET tracer for PD-L1 imaging. Bioorg. Med. Chem. Lett. 2020, 30, 127572; https://doi.org/10.1016/j.bmcl.2020.127572.Suche in Google Scholar PubMed
76. Huang, H., Zhu, H., Xie, Q., Tian, X., Yang, X., Feng, F., Jiang, Q., Sheng, X., Yang, Z. Evaluation of 124I-JS001 for hPD1 immuno-PET imaging using sarcoma cell homografts in humanized mice. Acta Pharm. Sin. B 2020, 10, 1321; https://doi.org/10.1016/j.apsb.2020.02.004.Suche in Google Scholar
77. Jerabek, P. A., Patrick, T. B., Kilbourn, M. R., Dischino, D. D., Welch, M. J. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Int. J. Rad. Appl. Instr. A 1986, 37, 599; https://doi.org/10.1016/0883-2889(86)90079-1.Suche in Google Scholar
78. Zhang, L., Yao, X., Cao, J., Hong, H., Zhang, A., Zhao, R., Zhang, Y., Zha, Z., Liu, Y., Qiao, J., Zhu, L., Kung, H. F. Vivo ester hydrolysis as a new approach in development of positron emission tomography tracers for imaging hypoxia. Mol. Pharm. 2019, 16, 1156; https://doi.org/10.1021/acs.molpharmaceut.8b01131.Suche in Google Scholar PubMed
79. Luo, Z., Zhu, H., Lin, X., Chu, T., Luo, R., Wang, Y., Yang, Z. Synthesis and radiolabeling of 64Cu-labeled 2-nitroimidazole derivative 64Cu-BMS2P2 for hypoxia imaging. Bioorg. Med. Chem. Lett. 2016, 26, 1397; https://doi.org/10.1016/j.bmcl.2016.01.077.Suche in Google Scholar PubMed
80. Zhang, W., Zhang, Q., Chen, Q., Zhu, H., Yang, Z., Chu, T. In vitro and in vivo evaluation of a 64Cu-labeled propylene amine oxime complex as a potential hypoxia imaging agent bearing two 3-nitrotriazole groups. J. Radioanal. Nucl. Chem. 2017, 314, 111; https://doi.org/10.1007/s10967-017-5345-4.Suche in Google Scholar
81. Zhang, Q., Huang, H., Chu, T. In vitro and in vivo evaluation of technetium-99m-labeled propylene amine oxime complexes containing nitroimidazole and nitrotriazole groups as hypoxia markers. J. Label. Compd. Radiopharm. 2016, 59, 14; https://doi.org/10.1002/jlcr.3365.Suche in Google Scholar PubMed
82. Ruan, Q., Zhang, X., Gan, Q., Fang, S., Zhang, J. Synthesis and evaluation of [99mTcN]2+ core and [99mTcO]3+ core labeled complexes with 4-nitroimidazole xanthate derivative for tumor hypoxia imaging. Bioorg. Med. Chem. Lett. 2020, 30, 127582; https://doi.org/10.1016/j.bmcl.2020.127582.Suche in Google Scholar PubMed
83. Yang, R., Wang, D., Chu, T. Synthesis and bioevaluation of radioiodinated nitroimidazole hypoxia imaging agents by one-pot click reaction. Bioorg. Med. Chem. Lett. 2020, 30, 127386; https://doi.org/10.1016/j.bmcl.2020.127386.Suche in Google Scholar PubMed
84. Zhang, X., Ruan, Q., Duan, X., Gan, Q., Song, X., Fang, S., Lin, X., Du, J., Zhang, J. Novel (99m)Tc-labeled glucose derivative for single photon emission computed tomography: a promising tumor imaging agent. Mol. Pharm. 2018, 15, 3417; https://doi.org/10.1021/acs.molpharmaceut.8b00415.Suche in Google Scholar PubMed
85. Gan, Q., Zhang, X., Ruan, Q., Fang, S., Zhang, J. 99mTc-CN7DG: a highly expected SPECT imaging agent of cancer with satisfactory tumor uptake and tumor-to-nontarget ratios. Mol. Pharm. 2021, 18, 1356; https://doi.org/10.1021/acs.molpharmaceut.0c01177.Suche in Google Scholar PubMed
86. Ding, J., Su, H., Wang, F., Chu, T. A pre-targeting strategy for imaging glucose metabolism using technetium-99m labelled dibenzocyclooctyne derivative. Bioorg. Med. Chem. Lett. 2019, 29, 1791; https://doi.org/10.1016/j.bmcl.2019.05.012.Suche in Google Scholar PubMed
87. Sun, P., Zhu, Y., Han, Y., Hu, K., Huang, S., Wang, M., Wu, H., Tang, G. Radiosynthesis and biological evaluation of an fluorine-18 labeled galactose derivative [18F]FPGal for imaging the hepatic asialoglycoprotein receptor. Bioorg. Med. Chem. Lett. 2020, 30, 127187; https://doi.org/10.1016/j.bmcl.2020.127187.Suche in Google Scholar PubMed
88. Liu, H., Han, Y., Li, J., Qin, M., Fu, Q., Wang, C., Liu, Z. 18F-Alanine derivative serves as an ASCT2 marker for cancer imaging. Mol. Pharm. 2018, 15, 947; https://doi.org/10.1021/acs.molpharmaceut.7b00884.Suche in Google Scholar PubMed
89. Li, C., Liu, H., Duan, D., Zhou, Z., Liu, Z. Preclinical study of an 18F-labeled glutamine derivative for cancer imaging. Nucl. Med. Biol. 2018, 64–65, 34; https://doi.org/10.1016/j.nucmedbio.2018.06.007.Suche in Google Scholar PubMed
90. Chen, J., Li, C., Hong, H., Liu, H., Wang, C., Xu, M., Han, Y., Liu, Z. Side chain optimization remarkably enhances the in vivo stability of 18F-labeled glutamine for tumor imaging. Mol. Pharm. 2019, 16, 5035; https://doi.org/10.1021/acs.molpharmaceut.9b00891.Suche in Google Scholar PubMed
91. Liu, S., Ma, H., Zhang, Z., Lin, L., Yuan, G., Tang, X., Nie, D., Jiang, S., Yang, G., Tang, G. Synthesis of enantiopure 18F-trifluoromethyl cysteine as a structure-mimetic amino acid tracer for glioma imaging. Theranostics 2019, 9, 1144; https://doi.org/10.7150/thno.29405.Suche in Google Scholar PubMed PubMed Central
92. Sun, A., Liu, S., Tang, X., Pan, Q., Zhang, Z., Ma, H., Nie, D., Tang, C., Tang, G. N-(2-18F-fluoropropionyl)-l-glutamate as a potential oncology tracer for PET imaging of glioma. Appl. Radiat. Isot. 2021, 168, 109530; https://doi.org/10.1016/j.apradiso.2020.109530.Suche in Google Scholar PubMed
93. Duan, X., Liu, T., Zhang, Y., Zhang, J. Synthesis and biological evaluation of novel 99mTc(CO)3-Labeled thymidine analogs as potential probes for tumor proliferation imaging. Molecules 2016, 21, 510; https://doi.org/10.3390/molecules21040510.Suche in Google Scholar PubMed PubMed Central
94. Zhao, M., Ning, H., Feng, M., Li, S., Chang, J., Qi, C. Novel [99mTcN]2+ labeled EGFR inhibitors as potential radiotracers for single photon emission computed tomography (SPECT) tumor imaging. Molecules 2014, 19, 5508; https://doi.org/10.3390/molecules19055508.Suche in Google Scholar PubMed PubMed Central
95. Yin, J., Hui, X., Yao, L., Li, M., Hu, H., Zhang, J., Xin, B., He, M., Wang, J., Nie, Y., Wu, K. Evaluation of Tc-99m labeled dimeric GX1 peptides for imaging of colorectal cancer vasculature. Mol. Imag. Biol. 2015, 17, 661; https://doi.org/10.1007/s11307-015-0838-4.Suche in Google Scholar PubMed
96. Zhu Hua, L. N., Zhang, Hong., Lin, Xinfeng., Li, Zhenfu., Yang, Zhi. Synthesis and evaluation of 111In-DOTA-mAb109 monoclonal antibody for potential SPECT molecular imaging (in Chinese). Acta Chim. Sinica 2015, 73, 36; https://doi.org/10.6023/a14120832.Suche in Google Scholar
97. Fu, P., Tian, L., Cao, X., Li, L., Xu, P., Zhao, C. Imaging CXCR4 expression with 99mTc-radiolabeled small-interference RNA in experimental human breast cancer xenografts. Mol. Imag. Biol. 2016, 18, 353; https://doi.org/10.1007/s11307-015-0899-4.Suche in Google Scholar PubMed
98. Han, Z., Xiao, Y., Wang, K., Yan, J., Xiao, Z., Fang, F., Jin, Z., Liu, Y., Sun, X., Shen, B. Development of a SPECT tracer to image c-met expression in a xenograft model of non–small cell lung cancer. J. Nuc. Med. 2018, 59, 1686; https://doi.org/10.2967/jnumed.117.206730.Suche in Google Scholar PubMed
99. Wang, Q., Li, S. B., Zhao, Y. Y., Dai, D. N., Du, H., Lin, Y. Z., Ye, J. C., Zhao, J., Xiao, W., Mei, Y., Xiao, Y. T., Liu, S. C., Li, Y., Xia, Y. F., Song, E. W., Tang, G. H., Zhang, W. G., Li, Z. J., Zheng, X. B., Cao, D. H., Li, M. Z., Zhong, Q., Chen, Z. P., Qian, C. N., Fan, W., Feng, G. K., Zeng, M. S. Identification of a sodium pump Na+/K+ ATPase alpha1-targeted peptide for PET imaging of breast cancer. J. Contr. Release 2018, 281, 178; https://doi.org/10.1016/j.jconrel.2018.05.019.Suche in Google Scholar PubMed
100. Zhao, B., Qin, S., Chai, L., Lu, G., Yang, Y., Cai, H., Yuan, X., Fan, S., Huang, Q., Yu, F. Evaluation of astatine-211-labeled octreotide as a potential radiotherapeutic agent for NSCLC treatment. Bioorg. Med. Chem. 2018, 26, 1086; https://doi.org/10.1016/j.bmc.2018.01.023.Suche in Google Scholar PubMed
101. Yang, X., Zhu, H., Yang, X., Li, N., Huang, H., Liu, T., Guo, X., Xu, X., Xia, L., Deng, C., Tian, X., Yang, Z. Targeting CAIX with [64Cu]XYIMSR-06 small molecular radiotracer enables noninvasive PET imaging of malignant glioma in U87 MG tumor cell xenograft mice. Mol. Pharm. 2019, 16, 1532; https://doi.org/10.1021/acs.molpharmaceut.8b01210.Suche in Google Scholar PubMed
102. Altine, B., Gai, Y., Han, N., Jiang, Y., Ji, H., Fang, H., Niyonkuru, A., Bakari, K. H., Rajab Arnous, M. M., Liu, Q., Zhang, Y., Lan, X. Preclinical evaluation of a fluorine-18 18F-labeled Phosphatidylinositol 3-kinase inhibitor for breast cancer imaging. Mol. Pharm. 2019, 16, 4563; https://doi.org/10.1021/acs.molpharmaceut.9b00690.Suche in Google Scholar PubMed
103. Cai, H., Shi, Q., Tang, Y., Chen, L., Chen, Y., Tao, Z., Yang, H., Xie, F., Wu, X., Liu, N., Yang, Y., Wu, H., Tian, R., Lu, X., Li, L. Positron emission tomography imaging of platelet-derived growth factor receptor β in colorectal tumor xenograft using zirconium-89 labeled dimeric affibody molecule. Mol. Pharm. 2019, 16, 1950; https://doi.org/10.1021/acs.molpharmaceut.8b01317.Suche in Google Scholar PubMed
104. Wang, L., Niu, M., He, Y., Tian, C., Peng, Z., Jia, J. Synthesis and evaluation of Al18F-NODA complex conjugated 2-(4-aminophenyl)benzothiazole as a potential tumor imaging agent. Bioorg. Med. Chem. Lett. 2020, 30, 127160; https://doi.org/10.1016/j.bmcl.2020.127160.Suche in Google Scholar PubMed
105. Jiang, Y., Zhou, W., Hu, K., Han, Y., Sun, P., Wang, Q., Li, G., Wu, H., Tang, G., Huang, S. Radiosynthesis and preclinical evaluation of [18F]FEM as a potential novel PET probe for tumor imaging. Bioorg. Med. Chem. Lett. 2020, 30, 127200; https://doi.org/10.1016/j.bmcl.2020.127200.Suche in Google Scholar PubMed
106. Liu, F., Guo, X., Liu, T., Xu, X., Li, N., Xiong, C., Li, C., Zhu, H., Yang, Z. Evaluation of pan-SSTRs targeted radioligand [64Cu]NOTA-PA1 using micro-PET imaging in xenografted mice. ACS Med. Chem. Lett. 2020, 11, 445; https://doi.org/10.1021/acsmedchemlett.9b00544.Suche in Google Scholar PubMed PubMed Central
107. Yuan, G., Liu, S., Ma, H., Su, S., Wen, F., Tang, X., Zhang, Z., Zhao, J., Lin, L., Xiang, X., Nie, D., Tang, G. Targeting phosphatidylethanolamine with fluorine-18 labeled small molecule probe for apoptosis imaging. Mol. Imag. Biol. 2020, 22, 914; https://doi.org/10.1007/s11307-019-01460-0.Suche in Google Scholar PubMed
108. Zhu, H., Liu, T.-L., Liu, C.-H., Wang, J., Zhang, H., Dong, B., Shen, J., Zhao, C.-K., Li, Z.-F., Cheng, Z., Yang, Z. Evaluation of a novel monoclonal antibody mAb109 by immuno-PET/fluorescent imaging for noninvasive lung adenocarcinoma diagnosis. Acta Pharmacol. Sin. 2020, 41, 101; https://doi.org/10.1038/s41401-019-0294-9.Suche in Google Scholar PubMed PubMed Central
109. Wang, X., Wang, F., Han, J., Yang, Z., Zhu, H., Yang, G. Construction and preclinical evaluation of a 124/131I-labeled radiotracer for the detection of mesothelin-overexpressing cancer. Mol. Pharm. 2020, 17, 1875; https://doi.org/10.1021/acs.molpharmaceut.9b01281.Suche in Google Scholar PubMed
110. Li, X., Fu, H., Wang, J., Liu, W., Deng, H., Zhao, P., Liao, W., Yang, Y., Wei, H., Yang, X., Chen, Y. Multimodality labeling of NGR-functionalized hyaluronan for tumor targeting and radiotherapy. Eur. J. Pharmaceut. Sci. 2021, 161, 105775; https://doi.org/10.1016/j.ejps.2021.105775.Suche in Google Scholar PubMed
111. Yang, Y., Wang, J., Liu, W., Deng, H., Zhao, P., Liao, W., Wang, G., Wei, H., Zhuo, L., Yang, X. 89Zr and 177Lu labeling of anti-DR5 monoclonal antibody for colorectal cancer targeting PET-imaging and radiotherapy. J. Radioanal. Nucl. Chem. 2021, 330, 997; https://doi.org/10.1007/s10967-021-07979-3.Suche in Google Scholar
112. Liu, Z.-F., Ye, Q.-N., Yang, J., Yang, M., Pan, D.-H., Dong, M.-J. Preclinical evaluation of [68Ga]Ga-MALAT-1-antisense oligonucleotides for specific PET imaging of MALAT-1 expressing tumours. Nucl. Med. Commun. 2021, 42, 782; https://doi.org/10.1097/mnm.0000000000001387.Suche in Google Scholar PubMed
113. Barth, R. F., Coderre, J. A., Vicente, M. G. H., Blue, T. E. Boron neutron capture therapy of cancer: current status and future prospects. Clin. Cancer Res. 2005, 11, 3987; https://doi.org/10.1158/1078-0432.ccr-05-0035.Suche in Google Scholar
114. Barth, R. F., H Vicente, M., Harling, O. K., Kiger, W. S., Riley, K. J., Binns, P. J., Wagner, F. M., Suzuki, M., Aihara, T., Kato, I., Kawabata, S. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146; https://doi.org/10.1186/1748-717x-7-146.Suche in Google Scholar PubMed PubMed Central
115. Shih, J.-L. A., Brugger, R. M. Gadolinium as a neutron capture therapy agent. Nucl. Technol. 1992, 19, 733; https://doi.org/10.1118/1.596817.Suche in Google Scholar PubMed
116. Mishima, Y., Honda, C., Ichihashi, M., Obara, H., Hiratsuka, J., Fukuda, H., Karashima, H., Kobayashi, T., Kanda, K., Yoshino, K. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet 1989, 334, 388; https://doi.org/10.1016/s0140-6736(89)90567-9.Suche in Google Scholar
117. Soloway, A. H., Hatanaka, H., Davis, M. A. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J. Med. Chem. 1967, 10, 714; https://doi.org/10.1021/jm00316a042.Suche in Google Scholar PubMed
118. Li, J., Shi, Y., Zhang, Z., Liu, H., Lang, L., Liu, T., Chen, X., Liu, Z. A metabolically stable boron-derived tyrosine serves as a theranostic agent for positron emission tomography guided boron neutron capture therapy. Bioconjugate Chem. 2019, 30, 2870; https://doi.org/10.1021/acs.bioconjchem.9b00578.Suche in Google Scholar PubMed
119. Li, R., Zhang, J., Guo, J., Xu, Y., Duan, K., Zheng, J., Wan, H., Yuan, Z., Chen, H. Application of nitroimidazole-carbobane-modified phenylalanine derivatives as dual-target boron carriers in boron neutron capture therapy. Mol. Pharm. 2020, 17, 202; https://doi.org/10.1021/acs.molpharmaceut.9b00898.Suche in Google Scholar PubMed
120. Shi, Y., Li, J., Zhang, Z., Duan, D., Zhang, Z., Liu, H., Liu, T., Liu, Z. Tracing boron with fluorescence and positron emission tomography imaging of boronated porphyrin nanocomplex for imaging-guided boron neutron capture therapy. ACS Appl. Mater. Interfaces 2018, 10, 43387; https://doi.org/10.1021/acsami.8b14682.Suche in Google Scholar PubMed
121. Li, L., Li, J., Shi, Y., Du, P., Zhang, Z., Liu, T., Zhang, R., Liu, Z. On-demand biodegradable boron nitride nanoparticles for treating triple negative breast cancer with boron neutron capture therapy. ACS Nano 2019, 13, 13843; https://doi.org/10.1021/acsnano.9b04303.Suche in Google Scholar PubMed
122. Stöcklin, G., Pike, V. W., Eds. Radiopharmaceuticals for Positron Emission Tomography Methodological Aspects; Springer: Dordrecht, 1993.10.1007/978-94-015-8204-9Suche in Google Scholar
123. Deng, X., Rong, J., Wang, L., Vasdev, N., Zhang, L., Josephson, L., Liang, S. H. Chemistry for positron emission tomography: recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew. Chem. Int. Ed. 2019, 58, 2580; https://doi.org/10.1002/anie.201805501.Suche in Google Scholar PubMed PubMed Central
124. Li, K.-P., Hu, M.-K., Kwang-Fu Shen, C., Lin, W.-Y., Hou, S., Zhao, L.-B., Cheng, C.-Y., Shen, D. H. Improved and optimized one-pot method for N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) synthesis using microwaves. Appl. Radiat. Isot. 2014, 94, 113; https://doi.org/10.1016/j.apradiso.2014.07.015.Suche in Google Scholar PubMed
125. Wang, L., Yao, S., Tang, R., Zhu, H., Zhang, L., Gong, J., Chen, Q., Collier, T. L., Xu, H., Liang, S. H. A concisely automated synthesis of TSPO radiotracer [18F]FDPA based on spirocyclic iodonium ylide method and validation for human use. J. Label. Compd. Radiopharm. 2020, 63, 119; https://doi.org/10.1002/jlcr.3824.Suche in Google Scholar PubMed
126. Mou, T., Tian, J., Tian, Y., Yun, M., Li, J., Dong, W., Lu, X., Zhu, Z., Mi, H., Zhang, X., Li, X. Automated synthesis and preliminary evaluation of [18F]FDPA for cardiac inflammation imaging in rats after myocardial infarction. Sci. Rep. 2020, 10, 18685; https://doi.org/10.1038/s41598-020-75705-2.Suche in Google Scholar PubMed PubMed Central
127. He, J., Yan, H., Du, Y., Ji, Y., Cai, F., Fan, W., Huo, L., Liu, Y.-H., Wang, Z., Li, S. Nucleophilic radiosynthesis of boron neutron capture therapy-oriented PET probe [18F]FBPA using aryldiboron precursors. Chem. Commun. 2021, 57, 8953; https://doi.org/10.1039/d1cc03369g.Suche in Google Scholar PubMed
128. Liu, Z., Pourghiasian, M., Radtke, M. A., Lau, J., Pan, J., Dias, G. M., Yapp, D., Lin, K.-S., Bénard, F., Perrin, D. M. An organotrifluoroborate for broadly applicable one-step 18F-labeling. Angew. Chem. Int. Ed. 2014, 53, 11876; https://doi.org/10.1002/anie.201406258.Suche in Google Scholar PubMed
129. Liu, Z., Lin, K.-S., Bénard, F., Pourghiasian, M., Kiesewetter, D. O., Perrin, D. M., Chen, X. One-step 18F labeling of biomolecules using organotrifluoroborates. Nat. Protoc. 2015, 10, 1423; https://doi.org/10.1038/nprot.2015.090.Suche in Google Scholar PubMed PubMed Central
130. Hong, H., Zhang, L., Xie, F., Zhuang, R., Jiang, D., Liu, H., Li, J., Yang, H., Zhang, X., Nie, L., Li, Z. Rapid one-step 18F-radiolabeling of biomolecules in aqueous media by organophosphine fluoride acceptors. Nat. Commun. 2019, 10, 989; https://doi.org/10.1038/s41467-019-08953-0.Suche in Google Scholar PubMed PubMed Central
131. Zhuang, H., Guo, Z., Zhuang, R., Zhang, X. Synthesis of 18F-radiolabeled organophosphine fluorides for thiol-chemoselective peptide conjugation. J. Label. Compd. Radiopharm. 2020, 63, 597; https://doi.org/10.1002/jlcr.3882.Suche in Google Scholar PubMed
132. Wang, G., Chen, Z., Wu, E., Wang, Y., Huang, H. A convenient method for the preparation of radioiodinated meta-iodobenzylguanidine at a no-carrier-added level. J. Label. Compd. Radiopharm. 2015, 58, 442.https://doi.org/10.1002/jlcr.3348.Suche in Google Scholar PubMed
133. Zhang, P., Zhuang, R., Guo, Z., Su, X., Chen, X., Zhang, X. A highly efficient copper-mediated radioiodination approach using aryl boronic acids. Chem. Eur J. 2016, 22, 16783; https://doi.org/10.1002/chem.201604105.Suche in Google Scholar PubMed
134. Sheng, J., Wang, X., Yan, J., Pan, D., Yang, R., Wang, L., Xu, Y., Yang, M. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. J. Mater. Chem. B 2018, 6, 8163; https://doi.org/10.1039/c8tb02817f.Suche in Google Scholar PubMed
135. Liu, L., Li, X., Dong, L., Li, Y., Yu, H., Chen, Q. A novel strategy for the preparation of the injectable PET/CT radiopharmaceutical (-)-[11C]-(1R,2S)-meta-hydroxyephedrine ((-)-[11C]HED). J. Radioanal. Nucl. Chem. 2019, 320, 543; https://doi.org/10.1007/s10967-019-06534-5.Suche in Google Scholar
136. Price, E. W., Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260; https://doi.org/10.1039/c3cs60304k.Suche in Google Scholar PubMed
137. Dai, L., Jones, C. M., Chan, W. T. K., Pham, T. A., Ling, X., Gale, E. M., Rotile, N. J., Tai, W. C.-S., Anderson, C. J., Caravan, P., Law, G.-L. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nat. Commun. 2018, 9, 857; https://doi.org/10.1038/s41467-018-03315-8.Suche in Google Scholar PubMed PubMed Central
138. Dai, L., Zhang, J., Wong, C. T., Chan, W. T. K., Ling, X., Anderson, C. J., Law, G.-L. Design of functional chiral cyclen-based radiometal chelators for theranostics. Inorg. Chem. 2021, 60, 7082; https://doi.org/10.1021/acs.inorgchem.0c03734.Suche in Google Scholar PubMed
139. Gai, Y., Sun, L., Hui, W., Ouyang, Q., Anderson, C. J., Xiang, G., Ma, X., Zeng, D. New bifunctional chelator p-SCN-PhPr-NE3TA for copper-64: synthesis, peptidomimetic conjugation, radiolabeling, and evaluation for PET imaging. Inorg. Chem. 2016, 55, 6892; https://doi.org/10.1021/acs.inorgchem.6b00395.Suche in Google Scholar PubMed PubMed Central
140. Gai, Y., Sun, L., Lan, X., Zeng, D., Xiang, G., Ma, X. Synthesis and evaluation of new bifunctional chelators with phosphonic acid arms for gallium-68 based PET imaging in melanoma. Bioconjugate Chem. 2018, 29, 3483; https://doi.org/10.1021/acs.bioconjchem.8b00642.Suche in Google Scholar PubMed PubMed Central
141. Xiong, C., Yin, D., Li, J., Huang, Q., Ravoori, M. K., Kundra, V., Zhu, H., Yang, Z., Lu, Y., Li, C. Metformin reduces renal uptake of radiotracers and protects kidneys from radiation-induced damage. Mol. Pharm. 2019, 16, 808; https://doi.org/10.1021/acs.molpharmaceut.8b01091.Suche in Google Scholar PubMed PubMed Central
142. Gorden, A. E. V., Xu, J., Raymond, K. N., Durbin, P. Rational design of sequestering agents for plutonium and other actinides. Chem. Rev. 2003, 103, 4207; https://doi.org/10.1021/cr990114x.Suche in Google Scholar PubMed
143. Wang, X., Dai, X., Shi, C., Wan, J., Silver, M. A., Zhang, L., Chen, L., Yi, X., Chen, B., Zhang, D., Yang, K., Diwu, J., Wang, J., Xu, Y., Zhou, R., Chai, Z., Wang, S. A 3,2-hydroxypyridinone-based decorporation agent that removes uranium from bones in vivo. Nat. Commun. 2019, 10, 2570; https://doi.org/10.1038/s41467-019-10276-z.Suche in Google Scholar PubMed PubMed Central
144. Wang, X., Wu, S., Guan, J., Chen, L., Shi, C., Wan, J., Liu, Y., Diwu, J., Wang, J., Wang, S. 3-Hydroxy-2-pyrrolidinone as a potential bidentate ligand for in vivo chelation of uranyl with low cytotoxicity and moderate decorporation efficacy: a solution thermodynamics, structural chemistry, and in vivo uranyl removal survey. Inorg. Chem. 2019, 58, 3349; https://doi.org/10.1021/acs.inorgchem.8b03442.Suche in Google Scholar PubMed
145. Vermeulen, K., Vandamme, M., Bormans, G., Cleeren, F. Design and challenges of radiopharmaceuticals. Semin. Nucl. Med. 2019, 49, 339; https://doi.org/10.1053/j.semnuclmed.2019.07.001.Suche in Google Scholar PubMed
146. Liu, M., Zhao, Z.-Q., Fang, W., Liu, S. Novel approach for 99mTc-labeling of red blood cells: evaluation of 99mTc-4SAboroxime as a blood pool imaging agent. Bioconjugate Chem. 2017, 28, 2998; https://doi.org/10.1021/acs.bioconjchem.7b00601.Suche in Google Scholar PubMed
147. Wang, X. -y., Wang, Y., Wu, Q., Liu, J.-j., Liu, Y., Pan, D.-h., Qi, W., Wang, L.-z., Yan, J.-j., Xu, Y.-p., Wang, G.-j., Miao, L.-y., Yu, L., Yang, M. Feasibility study of 68Ga-labeled CAR T cells for in vivo tracking using micro-positron emission tomography imaging. Acta Pharmacol. Sin. 2021, 42, 824; https://doi.org/10.1038/s41401-020-00511-5.Suche in Google Scholar PubMed PubMed Central
148. Lu, D., Wang, Y., Zhang, T., Wang, F., Li, K., Zhou, S., Zhu, H., Yang, Z., Liu, Z. Metabolic radiolabeling and in vivo PET imaging of cytotoxic T lymphocytes to guide combination adoptive cell transfer cancer therapy. J. Nanobiotechnol. 2021, 19, 175; https://doi.org/10.1186/s12951-021-00924-2.Suche in Google Scholar PubMed PubMed Central
149. Sun, Y., Ma, X., Cheng, K., Wu, B., Duan, J., Chen, H., Bu, L., Zhang, R., Hu, X., Deng, Z., Xing, L., Hong, X., Cheng, Z. Strained cyclooctyne as a molecular platform for construction of multimodal imaging probes. Angew. Chem. Int. Ed. 2015, 54, 5981; https://doi.org/10.1002/anie.201500941.Suche in Google Scholar PubMed
150. Shi, X., Gao, K., Huang, H., Gao, R. Pretargeted immuno-PET based on bioorthogonal chemistry for imaging EGFR positive colorectal cancer. Bioconjugate Chem. 2018, 29, 250; https://doi.org/10.1021/acs.bioconjchem.8b00023.Suche in Google Scholar PubMed
151. Wang, Y., Weng, J., Lin, J., Ye, D., Zhang, Y. NIR scaffold bearing three handles for biocompatible sequential click installation of multiple functional arms. J. Am. Chem. Soc. 2020, 142, 2787; https://doi.org/10.1021/jacs.9b10467.Suche in Google Scholar PubMed
152. Hu, Y., Zhang, J., Miao, Y., Wen, X., Wang, J., Sun, Y., Chen, Y., Lin, J., Qiu, L., Guo, K., Chen, H.-Y., Ye, D. Enzyme-mediated in situ self-assembly promotes in vivo bioorthogonal reaction for pretargeted multimodality imaging. Angew. Chem. Int. Ed. 2021, 60, 18082; https://doi.org/10.1002/anie.202103307.Suche in Google Scholar PubMed
153. Fang, J., Nakamura, H., Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136; https://doi.org/10.1016/j.addr.2010.04.009.Suche in Google Scholar PubMed
154. Chen, L., Zhong, X., Yi, X., Huang, M., Ning, P., Liu, T., Ge, C., Chai, Z., Liu, Z., Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21; https://doi.org/10.1016/j.biomaterials.2015.06.043.Suche in Google Scholar PubMed
155. Zhang, Y., Sheng, J., Zhai, F., Wang, X., Chen, L., Shi, C., Chen, L., He, L., Bai, R., Xie, J., Chai, Z., Diwu, J. Pioneering iodine-125-labeled nanoscale covalent organic frameworks for brachytherapy. Bioconjugate Chem. 2021, 32, 755; https://doi.org/10.1021/acs.bioconjchem.1c00040.Suche in Google Scholar PubMed
156. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611; https://doi.org/10.1524/ract.2011.1870.Suche in Google Scholar
157. Szelecsényi, F., Blessing, G., Qaim, S. M. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 575.10.1016/0969-8043(93)90172-7Suche in Google Scholar
158. Scholten, B., Kovács, Z., Tárkányi, F., Qaim, S. M. Excitation functions of 124Te(p, xn)124,123I reactions from 6 to 31 MeV with special reference to the production of 124I at a small cyclotron. Appl. Radiat. Isot. 1995, 46, 255; https://doi.org/10.1016/0969-8043(94)00145-p.Suche in Google Scholar
159. Wang, F., Liu, T., Li, L., Guo, X., Duan, D., Liu, Z., Zhu, H., Yang, Z. Production, quality control of next-generation PET radioisotope iodine-124 and its thyroid imaging. J. Radioanal. Nucl. Chem. 2018, 318, 1999; https://doi.org/10.1007/s10967-018-6277-3.Suche in Google Scholar
160. Meijs, W. E., Herscheid, J. D. M., Haisma, H. J., Wijbrandts, R., van Langevelde, F., Van Leuffen, P. J., Mooy, R., Pinedo, H. M. Production of highly pure no-carrier added 89Zr for the labelling of antibodies with a positron emitter. Appl. Radiat. Isot. 1994, 45, 1143; https://doi.org/10.1016/0969-8043(94)90029-9.Suche in Google Scholar
161. Wang, F., Ding, J., Guo, X., Liu, T., Ding, L., Xia, L., Zhu, H., Yang, Z. Production of the next-generation positron nuclide zirconium-89 (89Zr) guided by Monte Carlo simulation and its good quality for antibody labeling. J. Label. Compd. Radiopharm. 2021, 64, 47; https://doi.org/10.1002/jlcr.3888.Suche in Google Scholar PubMed
162. Rösch, F., Qaim, S. M., Stöcklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n)- and natRb(3He,xn)-Processes. Radiochim. Acta 1993, 61, 1.10.1524/ract.1993.61.1.1Suche in Google Scholar
163. Gracheva, N., Müller, C., Talip, Z., Heinitz, S., Köster, U., Zeevaart, J. R., Vögele, A., Schibli, R., van der Meulen, N. P. Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharm. Chem. 2019, 4, 12; https://doi.org/10.1186/s41181-019-0063-6.Suche in Google Scholar PubMed PubMed Central
164. Milenic, D. E., Brady, E. D., Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 2004, 3, 488; https://doi.org/10.1038/nrd1413.Suche in Google Scholar PubMed
165. Radchenko, V., Morgenstern, A., Jalilian, A. R., Ramogida, C. F., Cutler, C., Duchemin, C., Hoehr, C., Haddad, F., Bruchertseifer, F., Gausemel, H., Yang, H., Osso, J. A., Washiyama, K., Czerwinski, K., Leufgen, K., Pruszyński, M., Valzdorf, O., Causey, P., Schaffer, P., Perron, R., Maxim, S., Wilbur, D. S., Stora, T., Li, Y. Production and supply of α-particle–emitting radionuclides for targeted α-therapy. J. Nucl. Med. 2021, 62, 1495; https://doi.org/10.2967/jnumed.120.261016.Suche in Google Scholar PubMed PubMed Central
166. Liu, N., Yang, Y., Jin, J., Lin, R., Cao, Y., Liao, J., Liao, X. Preparation of radioactie isotopes by CS-30 cyclotron and their applications (in Chinese). J. Isot. 2012, 25, 189.10.7312/li--16274-026Suche in Google Scholar
167. Wang, X., Ma, W., Liu, W., Ma, H., Yang, Y., Wang, Y., Liu, N., Yang, G. Construction and preclinical evaluation of 211At labeled anti-mesothelin antibodies as potential targeted alpha therapy drugs. J. Radiat. Res. 2020, 61, 684; https://doi.org/10.1093/jrr/rraa049.Suche in Google Scholar PubMed PubMed Central
168. Chen, J., Lv, L., Wang, F., Zhang, T., Liu, Z. Production and isolation of actinium-225 with a 100 MeV proton cyclotron and solid-phase extraction for targeted radiotherapy. Chemistry 2021, 84, 1210.Suche in Google Scholar
169. Wang, Q., Wang, Y., Ding, J., Wang, C., Zhou, X., Gao, W., Huang, H., Shao, F., Liu, Z. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 2020, 579, 421; https://doi.org/10.1038/s41586-020-2079-1.Suche in Google Scholar PubMed
170. Hu, Z., Qu, Y., Wang, K., Zhang, X., Zha, J., Song, T., Bao, C., Liu, H., Wang, Z., Wang, J., Liu, Z., Liu, H., Tian, J. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat. Commun. 2015, 6, 7560; https://doi.org/10.1038/ncomms8560.Suche in Google Scholar PubMed PubMed Central
171. Hou, Y., Wang, C., Chen, M., Wang, M., Deng, G., Yang, H., Zhou, Z., Yang, S. Iridium complex nanoparticle mediated radiopharmaceutical-excited phosphorescence imaging. Chem. Commun. 2019, 55, 14442; https://doi.org/10.1039/c9cc07399j.Suche in Google Scholar PubMed
172. Fu, Q., Li, H., Duan, D., Wang, C., Shen, S., Ma, H., Liu, Z. External-radiation-induced local hydroxylation enables remote release of functional molecules in tumors. Angew. Chem. Int. Ed. 2020, 59, 21546; https://doi.org/10.1002/anie.202005612.Suche in Google Scholar PubMed
173. Lin, B., Gao, F., Yang, Y., Wu, D., Zhang, Y., Feng, G., Dai, T., Du, X. FLASH radiotherapy: history and future. Front. Oncol. 2021, 11, 644400; https://doi.org/10.3389/fonc.2021.644400.Suche in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Artikel in diesem Heft
- Frontmatter
- Editorial: Diamond Jubilee Issue
- Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
- A. Chemistry of Radioelements
- Five decades of GSI superheavy element discoveries and chemical investigation
- Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
- Sonochemistry of actinides: from ions to nanoparticles and beyond
- Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
- The speciation of protactinium since its discovery: a nightmare or a path of resilience
- On the volatility of protactinium in chlorinating and brominating gas media
- The aqueous chemistry of radium
- B. Energy Related Radiochemistry
- Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
- Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
- Uranium adsorption – a review of progress from qualitative understanding to advanced model development
- Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
- Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
- C. Nuclear Data
- How accurate are half-life data of long-lived radionuclides?
- Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
- An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
- An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
- Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
- Nuclear data for light charged particle induced production of emerging medical radionuclides
- D. Radionuclides and Radiopharmaceuticals
- The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
- Production of neutron deficient rare earth radionuclides by heavy ion activation
- Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
- Special radionuclide production activities – recent developments at QST and throughout Japan
- China’s radiopharmaceuticals on expressway: 2014–2021
- E. Environmental Radioactivity
- A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences