Startseite The speciation of protactinium since its discovery: a nightmare or a path of resilience
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The speciation of protactinium since its discovery: a nightmare or a path of resilience

  • Claire Le Naour EMAIL logo , Melody Maloubier und Jean Aupiais
Veröffentlicht/Copyright: 21. April 2022

Abstract

This review concerns the speciation of protactinium in aqueous solution under its both oxidation states +IV and +V. Emphasis is placed on experimental data obtained at trace level but also in macroscopic amount leading to the determination of thermodynamic and structural data. Thus, the complexation of Pa(V) with mineral acids and organic acids, mainly polyaminocarboxylic acids (iminodiacetic acid [IDA], nitrilotriacetic acid [NTA], ethylenediaminetetraacetic acid [EDTA] and diethylenetriaminepentaacetic acid [DTPA]) are highlighted and compared. The review also includes the actual knowledge about the Pa(IV) aqueous chemistry pinpointing its spectroscopic features.


Corresponding author: Claire Le Naour, Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Fajans, K. Die Stellung der Radioelemente im periodischen System. Phys. Z. 1913, 14, 136.Suche in Google Scholar

2. Russell, A. S. The periodic system and the radio-elements. Chem. News 1913, 107, 49.Suche in Google Scholar

3. Soddy, F. The radio-elements and the periodic law. Chem. News 1913, 107, 97; https://doi.org/10.1038/091057a0.Suche in Google Scholar

4. Fajans, K., Göhring, O. Über die komplexe Natur des UrX. Naturwissenschaften 1913, 14, 339; https://doi.org/10.1007/bf01495360.Suche in Google Scholar

5. Hahn, O., Meitner, L. Die Muttersubstanz des Actiniums, ein neues radio-aktives Element von langer Lebensdauer. Phys. Z. 1918, 19, 208.10.1002/bbpc.19180241107Suche in Google Scholar

6. Soddy, F., Cranston, J. A. The parent of actinium. Proc. R. Soc. A 1918, 94, 384.10.1098/rspa.1918.0025Suche in Google Scholar

7. Kirby, H. W. Protactinium in the chemistry of the actinide elements; Katz, J. J., Seaborg, G. T., Morss, L. R., Eds.; Chapman and Hall: New York, London, 1986; p. 103.Suche in Google Scholar

8. Brown, D., Maddock, A. G. Protactinium. Q. Rev. 1963, 17, 289; https://doi.org/10.1039/qr9631700289.Suche in Google Scholar

9. Crookes, W. Radioactivity of uranium. Proc. Roy. Soc. Lond. 1900, 66, 409.10.1098/rspl.1899.0120Suche in Google Scholar

10. Grosse, A. V. The atomic weight of protactinium. J. Am. Chem. Soc. 1934, 56, 2501; https://doi.org/10.1021/ja01326a509.Suche in Google Scholar

11. Grosse, A. V. The analytical chemistry of element 91, ekatantalum, and its difference from tantalum. J. Am. Chem. Soc. 1930, 52, 1742; https://doi.org/10.1021/ja01368a002.Suche in Google Scholar

12. Collins, D. A., Hillary, J. J., Naim, J. S., Philips, G. M. The development and application of a process for the recovery of over 100g of protactinium-231 from a uranium refinery waste material. J. Radioanal. Nucl. Chem. 1962, 24, 441; https://doi.org/10.1016/0022-1902(62)80040-2.Suche in Google Scholar

13. Kirby, H. W. The Radiochemistry of Protactinium; Report NAS-NS 3016, USAEC: Washington D. C., 1959.10.2172/4106339Suche in Google Scholar

14. Palshin, E. S., Myasoedov, B. F., Davydov, A. V. Analytical Chemistry of Protactinium; Ann Arbor – Humphrey Science Publishers: London, 1970.Suche in Google Scholar

15. Keller, C. The chemistry of protactinium. Angew. Chem. Int. Ed. 1965, 5, 23.10.1002/anie.196600231Suche in Google Scholar

16. Guillaumont, R., Miranda, C. Solvent extraction of protactinium. Solv. Extr. Rev. 1971, 1, 105.Suche in Google Scholar

17. Knight, A. W. Radiochemical Analysis of Protactinium Speciation: Applications in Nuclear Forensics, Nuclear Energy and Environmental Radiochemistry. Ph.D. Thesis, Univ. Iowa, United States, 2016.10.17077/etd.2guiid95Suche in Google Scholar

18. IAEA. Thorium Fuel Cycle. Potential Benefits and Challenges; IAEA: Vienna, Vol. 1450, 2005.Suche in Google Scholar

19. Kumati, N., Pathal, P. N., Prabhu, D. R., Manchanda, V. K. Solvent extraction studies of protactinium for its recovery from short-cooled spect fuel and high-level waste solutions in thorium fuel cycle using diisobutylcarbinol (DIBC) as extractant. Desalination Water Treat. 2012, 38, 46.10.5004/dwt.2012.2292Suche in Google Scholar

20. Malmbeck, R., Banik, N. L. Purification and accurate concentration determination of 231Pa. J. Radioanal. Nucl. Chem. 2021, 328, 879; https://doi.org/10.1007/s10967-021-07699-8.Suche in Google Scholar

21. Medley, P., Tims, S. G., Froehlich, M. B., Fifield, L. K., Bollhöfer, A., Wallner, A., Pavetich, S. Development of 231Pa AMS measurements to improve radiological dose assessment from uranium mining and milling. Nucl. Instrum. Methods Phys. Res., Sect. B 2019, 438, 66; https://doi.org/10.1016/j.nimb.2018.07.030.Suche in Google Scholar

22. Mendes, M., Aupiais, J., Jutier, C., Pointurier, F. Determination of weight distribution ratios of Pa(V) and Np(V) with some extraction chromatography resins and the AG1-X8 resin. Anal. Chim. Acta 2013, 780, 110; https://doi.org/10.1016/j.aca.2013.04.019.Suche in Google Scholar PubMed

23. Knight, A. W., Nelson, A. W., Eitrheim, E. S., Forbes, T. Z., Schlutz, M. K. A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J. Radioanal. Nucl. Chem. 2016, 307, 59; https://doi.org/10.1007/s10967-015-4124-3.Suche in Google Scholar

24. Ostapenko, V., Sinenko, I., Arefyeva, E., Lapshina, E., Ermolaev, S., Zhuikov, B., Kalmykov, S. Sorption of protactinium(V) on extraction chromatographic resins from nitric and hydrochloric solutions. J. Radioanal. Nucl. Chem. 2017, 311, 1545; https://doi.org/10.1007/s10967-016-4996-x.Suche in Google Scholar

25. Dinkar, A. K., Singh, S. K., Dhami, P. S., Gandhi, P. M., Verma, R., Reddy, A. V. R. Extraction of protactinium from acid media using Aliquat 336. Separ. Sci. Technol. 2017, 52, 1359; https://doi.org/10.1080/01496395.2017.1288140.Suche in Google Scholar

26. Dalvi, A. A., Verma, R. Radiochemical separation of 231Pa from siliceous cake prior to its determination by gamma ray spectrometry. Radiochim. Acta 2017, 105, 831; https://doi.org/10.1515/ract-2017-2776.Suche in Google Scholar

27. Ghosh, M., Devi, R., Swain, K. K. Effect of different physico-chemical factors on sorption of Pa(V) on iron oxides. Appl. Radiat. Isot. 2020, 159, 109093; https://doi.org/10.1016/j.apradiso.2020.109093.Suche in Google Scholar PubMed

28. Ghosh, M., Yadav, A. K., Remya devi, P. S., Swain, K. K., Verma, R., Jha, S. N., Bhattacharyya, D. Thermodynamic and spectroscopic investigation of Nb(V) and Pa(V) sorption on colloidal silica. Environ. Earth Sci. 2020, 79, 32; https://doi.org/10.1007/s12665-019-8781-3.Suche in Google Scholar

29. Kmak, K. N., Shaughnessy, D. A., Vujic, J. Batch and column studies of radium, actinium, thorium and protactinium on CL resin in nitric acid, hydrochloric acid and hydrofluoric acid. J. Radioanal. Nucl. Chem. 2021, 328, 225; https://doi.org/10.1007/s10967-021-07636-9.Suche in Google Scholar

30. Pavia, F., Andersin, R., Vivancos, S., Fleisher, M., Lam, P., Lu, Y., Cheng, H., Zhang, P., Edwards, R. L. Intense hydrothermal scavenging of 230Th and 231Pa. Mar. Chem. 2017, 201, 212.10.1016/j.marchem.2017.08.003Suche in Google Scholar

31. Gdaniec, S., Roy-Barman, M., Foliot, L., Thil, F., Dapoigny, A., Burckel, P., Garcia-Orellana, J., Masque, P., Morth, C. M., Andersson, P. S. Thorium and protactinium isotopes as tracers of marine particle fluxes and deep water circulation in the Mediterranean sea. Mar. Chem. 2018, 199, 12; https://doi.org/10.1016/j.marchem.2017.12.002.Suche in Google Scholar

32. Ng, H. C., Robinson, L. F., Rowland, G. H., Chen, S. S., McManus, J. F. Coupled analysis of seawater and sedimentary 231Pa/230Th in the tropical Atlantic. Mar. Chem. 2020, 227, 103894; https://doi.org/10.1016/j.marchem.2020.103894.Suche in Google Scholar

33. Pinedo-Gonzalez, P., Anderson, R. F., Vivancos, S. M., Pavia, F. J., Fleisher, M. Q. A new method to extract 232Th, 230Th and 231Pa from seawater using a bulk-extraction technique with Nobias PA-1 chelating resin. Talanta 2021, 223, 121734; https://doi.org/10.1016/j.talanta.2020.121734.Suche in Google Scholar PubMed

34. Morgenstern, A., Apostolidis, C., Mayer, K. Age determination of highly enriched uranium: separation and analysis of 231Pa. Anal. Chem. 2002, 74, 5513; https://doi.org/10.1021/ac0203948.Suche in Google Scholar PubMed

35. Eppich, G. E., Williams, R. W., Gaffney, A. M., Schorzman, K. C. 235U-231Pa age dating of uranium materials for nuclear forensic investigations. J. Anal. At. Spectrom. 2013, 28, 666; https://doi.org/10.1039/c3ja50041a.Suche in Google Scholar

36. Higginson, M., Gilligan, C., Taylor, F., Knight, D., Kaye, P., Shaw, T., Thompson, P. Development of rapid methodologies for uranium age dating. J. Radioanal. Nucl. Chem. 2018, 318, 157; https://doi.org/10.1007/s10967-018-6021-z.Suche in Google Scholar

37. Varga, Z., Nicholl, A., Hrnecek, E., Wallenius, M., Mayer, K. Measurement of the 231Pa/235U ratio for the age determination of uranium materials. J. Radioanal. Nucl. Chem. 2018, 318, 1565; https://doi.org/10.1007/s10967-018-6247-9.Suche in Google Scholar PubMed PubMed Central

38. Kayzar-Boggs, T. M., Treinen, K. C., Okubo, A., Denton, J. S., Gaffney, A. M., Miller, M. M., Steiner, R. E., Wende, A. M., Williams, R. W. An interlaboratory collaboration to determine consensus 231Pa/235U model ages of a uranium certified reference material for nuclear forensics. J. Radioanal. Nucl. Chem. 2020, 323, 1189; https://doi.org/10.1007/s10967-020-07030-x.Suche in Google Scholar

39. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Phys. Med. Biol. 2015, 60, 931; https://doi.org/10.1088/0031-9155/60/3/931.Suche in Google Scholar PubMed

40. Mastren, T., Stein, B. W., Gannon Parker, T., Radchenko, V., Copping, R., Owens, A., Wyant, L. E., Brugh, M., Kozimor, S. A., Meiring Nortier, F., Birnbaum, E. R., John, K. D., Fassbinder, M. E. Separation of protactinium employing sulfur-based extraction chromatographic resins. Anal. Chem. 2018, 90, 7012; https://doi.org/10.1021/acs.analchem.8b01380.Suche in Google Scholar

41. Friend, M. T., Mastren, T., Gannon Parker, T., Vermeulen, C., Brugh, M., Birnbaum, E. R., Meiring Nortier, F., Fassbender, M. E. Production of 230Pa by proton irradiation of 232Th at the LANL isotope production facility: precursor of 230U for targeted alpha therapy. Appl. Radiat. Isot. 2020, 156, 108973; https://doi.org/10.1016/j.apradiso.2019.108973.Suche in Google Scholar

42. Wilson, R. Peculiar protactinium. Nat. Chem. 2012, 4, 586; https://doi.org/10.1038/nchem.1389.Suche in Google Scholar

43. Muxart, R., Guillaumont, R. Protactinium. In Compléments au nouveau traité de chimie minérale. Masson: Paris, France, Vol. 2, 1974.Suche in Google Scholar

44. Fried, S., Hindman, J. C. The +4 oxidation state of protactinium in aqueous solution. J. Am. Chem. Soc. 1954, 76, 4863; https://doi.org/10.1021/ja01648a030.Suche in Google Scholar

45. Haïssinsky, M., Pluchet, E. Détermination du potential normal du couple Pa(IV)/Pa(V). J. Chim. Phys. 1962, 608.10.1051/jcp/1962590608Suche in Google Scholar

46. Elson, E. E. The chemistry of protactinium in the actinide elements; Seaborg, G. T., Katz, J. J., Eds.; McGraw-Hill Book Company: New York, 1954; p. 103.Suche in Google Scholar

47. Ferreira de Miranda, C., Maddock, A. G. The chemistry of protactinium-VI. The polarography of protactinium. J. Inorg. Nucl. Chem. 1962, 24, 1623.10.1016/0022-1902(62)80017-7Suche in Google Scholar

48. Schwochau, K., Astheimer, L. Zur polarographischen Reduktion von Protactinium(V) in wässeriger Lösung und in Acetonitril. J. Inorg. Nucl. Chem. 1970, 32, 119; https://doi.org/10.1016/0022-1902(70)80455-9.Suche in Google Scholar

49. Musikas, C. Réduction électrolytique du protactinium pentavalent; Rapport CEA R3023, CEA, CEN Fontenay-aux-Roses: France, 1966.Suche in Google Scholar

50. Bouissières, G., Haissinsky, M. A new valency of protactinium. J. Chem. Soc. (Lond.) Suppl. Issue 1949, n°2, S256.10.1039/JR949000S256Suche in Google Scholar

51. Haissinsky, M., Bouissières, G. Recherches chimiques sur le protactinium. I. Existence et propriétés du protactinium tétravalent. Bull. Soc. Chim. Fr. 1951, 18, 146.Suche in Google Scholar

52. Brown, D., Smith, A. J., Wilkins, R. G. Spectra of protactinium(IV) and (V) in hydrochloric acid. J. Chem. Soc. 1959, 1463.10.1039/jr9590001463Suche in Google Scholar

53. Guillaumont, R., Muxart, R., Bouissières, G., Haissinsky, M. Spectres d’absorption du protactinium penta- et tétravalent en solution aqueuse. C. R. Acad. Sci. 1959, 248, 3298.10.1051/jcp/1960571019Suche in Google Scholar

54. Feirrera de Miranda, C., Muxart, R. Spectre d’absorption et stabilité du tétrafluorure de protactinium en milieu fluorhydrique neutre. Bull. Soc. Chim. Fr. 1964, 2174.Suche in Google Scholar

55. Bagnall, K. W., Brown, D. The absorption spectra of protactinium(IV) and uranium(IV) in aqueous hydrochloric acid. J. Chem. Soc. 1967, 275; https://doi.org/10.1039/j19670000275.Suche in Google Scholar

56. Marquardt, C. M., Panak, P. J., Apostolidis, C., Morgenstern, A., Walther, C., Klenze, R., Fanghänel, T. Fluorescence spectroscopy on protactinium(IV) in aqueous solution. Radiochim. Acta 2004, 92, 445; https://doi.org/10.1524/ract.92.7.445.35755.Suche in Google Scholar

57. Bouissières, G., Vernois, J. Extraction par solvants du protactinium tétravalent. C. R. Acad. Sci. 1957, 244, 2508.Suche in Google Scholar

58. Pluchet, E., Muxart, R. Chromatographie en milieu chlorhydrique du protactinium tétravalent. Bull. Soc. Chim. Fr. 1961, 372.Suche in Google Scholar

59. Muxart, R., Arapaki-Strapélias, H. Partage du protactinium pentavalent et tétravalent entre diverses solutions aqueuses et la tri-n-octylamine. Bull. Soc. Chim. Fr. 1963, 888.Suche in Google Scholar

60. Guillaumont, R. Etude de l’hydrolyse du protactinium tétravalent. C. R. Acad. Sci. Paris 1965, 260, 1416.Suche in Google Scholar

61. Guillaumont, R. Etude des espèces ioniques du protactinium en solution aqueuse. V.- Hydrolyse et polymérisation du protactinium tétravalent. Bull. Soc. Chim. Fr. 1968, 162.Suche in Google Scholar

62. Mitsuji, T. The chemistry of protactinium. VI. A study of the sulfato-complex of Pa(IV) by means of TTA-benzene extraction. Bull. Chem. Soc. Jpn. 1968, 41, 115; https://doi.org/10.1246/bcsj.41.115.Suche in Google Scholar

63. Kawasuji, I., Suzuki, S. The chemistry of protactinium. X. A study of the effect of chromium(II) on the solvent extraction of protactinium(IV), using N-benzoyl-N-phenylhydroxylamine, tri-n-octylamine and thenoyltrifluoroacetone as the extractants. Bull. Chem. Soc. Jpn. 1974, 47, 104; https://doi.org/10.1246/bcsj.47.104.Suche in Google Scholar

64. Lundqvist, R. Aqueous chemistry of protactinium(IV). I. Stability constants for Pa(IV)-acetylacetone complexes. Acta Chem. Scand. 1974, A28, 243; https://doi.org/10.3891/acta.chem.scand.28a-0243.Suche in Google Scholar

65. Kawasuji, I., Sato, A., Suzuki, S. The chemistry of protactinium. XI. A study of the solvent extraction of protactinium(IV) reduced with Eu(II) from a perchloric acid solution using thenoyltrifluoroacetone as the extractant. Bull. Chem. Soc. Jpn. 1974, 47, 2213; https://doi.org/10.1246/bcsj.47.2213.Suche in Google Scholar

66. Banik, N. L., Vallet, V., Réal, F., Belmecheri, R. M., Schimmelpfennig, B., Rothe, J., Marsac, R., Lindqvist-Reis, P., Walther, C., Denecke, M. A., Marquardt, C. M. First structural characterization of Pa(IV) in aqueous solution and quantum chemical investigations of the tetravalent actinides up to Bk(IV): the evidence of a curium break. Dalton Trans. 2016, 45, 453; https://doi.org/10.1039/c5dt03560k.Suche in Google Scholar PubMed

67. Mikheev, N. B., Kamenskaya, A. N., Rumer, I. A., Kulyukhin, S. A., Auérman, L. N. Reduction of protactinium to the bivalent state in the melt and determination of the Pa3+/Pa2+ oxidation potential. Translated from Radiokhimiya 1993, 35, 512.10.1070/MC1993v003n05ABEH000287Suche in Google Scholar

68. Ionova, G. V., Pershina, V., Johnason, E., Fricke, B., Schädel, M. Redox reactions for group 5 elements, including element 105, in aqueous solutions. J. Phys. Chem. 1992, 96, 11096; https://doi.org/10.1021/j100205a086.Suche in Google Scholar

69. Guillaumont, R., Ionova, G., Krupa, J. C., David, F. Considerations on protactinium redox potentials. Radiochim. Acta 1996, 75, 97; https://doi.org/10.1524/ract.1996.75.2.97.Suche in Google Scholar

70. Starik, I. Y., Sheidina, L. D., Il’Menkova, L. I. The state of microscopic quantities of radioactive elements in solution-X. A study of the state of protactinium in aqueous solution. Translated from Radiokhimiya 1959, 4, 185.Suche in Google Scholar

71. Jaussaud, C. Contribution à l’étude thermodynamique de l’hydrolyse de Pa(V) à l’échelle des traces par la technique d’extraction liquide-liquide. Ph.D. Thesis; University: Orsay. Paris-Sud, 2003.Suche in Google Scholar

72. Spitsyn, V. I., Dyachkova, R. A., Khlebnikov, V. P. Extraction du protactinium par le tributylphosphate. I. A propos des formes inextractibles du protcatinium. Translated from Radiokhimiya 1965, 3, 257.Suche in Google Scholar

73. Suzuki, S., Inoue, Y. The chemistry of protactinium. VII-The stability of protactinium(V) in perchloric acid and TTA-benzene solutions. Bull. Chem. Soc. Jpn. 1969, 42, 1916; https://doi.org/10.1246/bcsj.42.1916.Suche in Google Scholar

74. Kolarich, R. T., Ryan, V. A., Schuman, R. P. Association constants of anionic-protactinium (V) complexes. J. Inorg. Nucl. Chem. 1967, 29, 783; https://doi.org/10.1016/0022-1902(67)80336-1.Suche in Google Scholar

75. Guillaumont, R. Contribution à l’étude des espèces ioniques du protactinium en solution aqueuse; Thesis; Paris Univ: Paris, 1966.Suche in Google Scholar

76. Trubert, D., Le Naour, C., Jaussaud, C. Hydrolysis of protactinium(V). I. Equilibrium constants at 25 °C : a solvent extraction study with TTA in aqueous system Pa(V)/H2O/H+/Na+/ClO4-. J. Solut. Chem. 2002, 31, 261; https://doi.org/10.1023/a:1015849119803.Suche in Google Scholar

77. Rydberg, J. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique. Min. Proc. Ext. Met. Rev. 2000, 21, 167; https://doi.org/10.1080/08827500008914168.Suche in Google Scholar

78. D’yachova, R. A., Khlebnikov, V. P., Spitsyn, V. I. Investigation of the complex formation of protactinium with acetylacetone in perchloric acid solutions. Translated from Radiokhimiya 1968, 10, 17.Suche in Google Scholar

79. Liljenzin, J. O. Stability constants for protactinium(V)-acetylacetone complexes. Acta Chem. Scand. 1970, 24, 1655; https://doi.org/10.3891/acta.chem.scand.24-1655.Suche in Google Scholar

80. Guillaumont, R. Etude des espèces ioniques du protactinium en solution aqueuse. III. Calcul des constantes d’hydrolyse du protactinium pentavalent et des constantes de formation de ses complexes avec la thénoyl-2-trifluoroacétone. Bull. Soc. Chim. Fr. 1965, 135.Suche in Google Scholar

81. D’yachova, R. A., Khlebnikov, V. P., Spitsyn, V. I. Complex formation by protactinium with thenoyltrifluoroacetone in perchlorate solutions. Russ. J. Inorg. Chem. 1968, 13, 439.Suche in Google Scholar

82. Guillaumont, R., Muxart, R., Bouissières, G. Extraction d’un élément à l’état de chélate. Bull. Soc. Chim. Fr. 1968, 5, 1952.Suche in Google Scholar

83. Guillaumont, R. Etude des espèces ioniques du protactinium en solution aqueuse. IV.-Hydrolyse et polymérisation du protactinium pentavalent. Bull. Soc. Chim. Fr. 1965, 2106.Suche in Google Scholar

84. Welch, G. A. The ‘protactinyl’ ion. Nature 1953, 172, 458; https://doi.org/10.1038/172458a0.Suche in Google Scholar

85. Rydberg, J. Studies on the extraction of metal complexes. XII-A. The formation of composite, mononuclear complexes. Part A: Theor. Ark. Kemi. 1954, 8, 101.Suche in Google Scholar

86. Trubert, D., Le Naour, C., Jaussaud, C., Mrad, O. Hydrolysis of protactinium(V). III. Determination of standard thermodynamic data. J. Solut. Chem. 2003, 32, 505; https://doi.org/10.1023/a:1025309815371.10.1023/A:1025309815371Suche in Google Scholar

87. Grenthe, I., Plyasunov, A. V., Runde, W. H., Konings, Moore, E. E., Gaona, X., Rao, L., Grambow, B., Smith, A. L. Second update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OCDE/NEA, 14, 2020.Suche in Google Scholar

88. Guillaumont, R. Contribution à l’étude des espèces ioniques du protactinium en solution aqueuse. Rev. Chim. Miner. 1966, 3, 339.Suche in Google Scholar

89. Guillaumont, R. Etude des espèces ioniques du protactinium en solution aqueuse. VI.-Détermination de la deuxième constante d’hydrolyse du protactinium pentavalent. Bull. Soc. Chim. Fr. 1968, 1, 168.Suche in Google Scholar

90. Liljenzin, J. O., Rydberg, J. Complex formation between protactinium and acetylacetone. Colloque International sur la Physico-Chimie du Protactinium, Orsay, France, 2–8 juillet 1965; Editions du CNRS: Paris, 1966; p. 165.Suche in Google Scholar

91. Jakovac, Z., Lederer, M. The properties of protactinium(V) in alkaline solutions. J. Chromatogr. 1959, 2, 411; https://doi.org/10.1016/s0021-9673(01)86316-0.Suche in Google Scholar

92. Cazaussus, A., Arapaki-Srapélias, H., Muxart, R. Quelques observations sur le comportement du protactinium(V) à l’échelle des indicateurs en solution aqueuse alcaline. Radiochem. Radioanal. Lett. 1971, 6, 297.Suche in Google Scholar

93. Guillaumont, R. Contribution à la mise en évidence d’un anion protactinate. In Proceedings of the 3rd International Conference on Protactinium, Schloβ Elmau, 15–18 April 1969; Bundesministerium für Bildung und Wissenschaft: Bonn, 1971; pp. 37–1–37–11.Suche in Google Scholar

94. Le Naour, C., Roques, J., Den Auwer, C., MoisyAupiais, P. J. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety. Radiochim. Acta 2019, 107, 979; https://doi.org/10.1515/ract-2019-3119.Suche in Google Scholar

95. Bukhsh, M. N., Flegenheimer, J., Hall, F. M., Maddock, A. G., Feirreira de Miranda, C. The chemistry of protactinium-VIII. The fluoro-complexes. J. Inorg. Nucl. Chem. 1966, 28, 421; https://doi.org/10.1016/0022-1902(66)80321-4.Suche in Google Scholar

96. Siberchicot, B., Aupiais, J., Le Naour, C. Quantum molecular dynamics investigations of protactinium (V) fluoro and oxofluoro complexes in solution. Radiochim. Acta 2021, 109, 673; https://doi.org/10.1515/ract-2020-0076.Suche in Google Scholar

97. Mendes, M., Hamadi, S., Le Naour, C., Roques, J., Jeanson, A., Den Auwer, C., Moisy, P., Topin, S., Aupiais, J., Hennig, C., Di Giandomenico, M. V. Thermodynamical and structural study of protactinium(V) oxalate complexes in solution. Inorg. Chem. 2010, 49, 9962; https://doi.org/10.1021/ic101189w.Suche in Google Scholar

98. Di Giandomenico, M. V., Trubert, D., Le Naour, C. Sulphate complexation of protactinium(V) at 25 °C. Radiochim. Acta 2007, 95, 617; https://doi.org/10.1524/ract.2007.95.11.617.Suche in Google Scholar

99. Di Giandomenico, M. V., Le Naour, C. Complex formation between protactinium(V) and sulfate ions at 10 and 60 °C. Inorg. Chim. Acta. 2009, 362, 3253; https://doi.org/10.1016/j.ica.2009.02.033.Suche in Google Scholar

100. Le Naour, C., Trubert, D., Di Giandomenico, M. V., Fillaux, C., Den Auwer, C., Moisy, P., Hennig, C. First structural characterization of a protactinium(V) single oxo bond in aqueous media. Inorg. Chem. 2005, 44, 9542; https://doi.org/10.1021/ic0512330.Suche in Google Scholar

101. De Sio, S. M., Wilson, R. E. EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric solutions. Inorg. Chem. 2014, 53, 12643; https://doi.org/10.1021/ic502376m.Suche in Google Scholar

102. Galateanu, I. Etude de la formation des complexes de protactinium avec les acides di- et poly-carboxyliques. Can. J. Chem. 1966, 44, 647; https://doi.org/10.1139/v66-090.Suche in Google Scholar

103. Shiokawa, T., Kikuchi, M., Omori, T. Stability constants of Pa(V)-EDTA complex. Inorg. Nucl. Chem. Lett. 1969, 5, 105; https://doi.org/10.1016/0020-1650(69)80179-0.Suche in Google Scholar

104. Ischibashi, M., Komori, S., Akiyama, D., Kirishima, A. Study of the complexation of protactinium(V) with EDTA. J. Solut. Chem. 2021, 50, 1432.10.1007/s10953-021-01126-ySuche in Google Scholar

105. Mendes, M., Leguay, S., Le Naour, C., Hamadi, S., Roques, J., Moisy, P., Guillaumont, D., Topin, S., Aupiais, J., Den Auwer, C., Hennig, C. Thermodynamic study of the complexation of protactinium(V) with diethylenetriaminepentaacetic acid. Inorg. Chem. 2013, 52, 7497; https://doi.org/10.1021/ic400378t.Suche in Google Scholar PubMed

106. Luchini, C., Leguay, S., Aupiais, J., Cannes, C., Le Naour, C. Complexation of protactinium(V) with nitrilotriacetic acid: a study at the tracer scale. New J. Chem. 2018, 42, 7789; https://doi.org/10.1039/c7nj04683a.Suche in Google Scholar

107. Luchini, C. Complexation d’actinides III, V et VI par des ligands polyaminocarboxyliques. Ph.D. Thesis; Univ. Paris-Sud, 2018.Suche in Google Scholar

108. Brown, D., Wilkins, R. G. Further observations on the absorption spectra of protactinium-(IV) and –(V) in certain solutions. J. Chem. Soc. 1961, 3804.10.1039/jr9610003804Suche in Google Scholar

109. Mitsuji, T. The chemistry of protactinium. IV. On the absorption spectra of tetravalent protactinium in aqueous solutions. Bull. Chem. Soc. Jpn. 1967, 40, 2092; https://doi.org/10.1246/bcsj.40.2091.Suche in Google Scholar

110. Haissinski, M., Muxart, R., Arapaki, H. Sur la dissolution de Pa(IV) dans les solutions aqueuses concentrées de NH4F. Bull. Soc. Chim. Fr. 1961, 2248.Suche in Google Scholar

111. Lundqvist, R. Ionic species of Pa(IV) in aqueous perchlorate solutions. Proceedings of the International Solvent Extraction Conference, I.S.E.C. 74, Lyon. 8–14th September 1974. Society of Chemical Industry, London.Suche in Google Scholar

112. Lundqvist, R. Aqueous chemistry of protactinium(IV). 5. Benzoylacetone complexes of Pa(IV) and Hf(IV). Acta Chem. Scand. 1975, A29, 231; https://doi.org/10.3891/acta.chem.scand.29a-0231.Suche in Google Scholar

113. Lundqvist, R., Andersson, J. E. Aqueous chemistry of protactinium(IV). 4. Complex formation between Pa(IV) and EDTA. of Pa(IV) and Hf(IV). Acta Chem. Scand. 1974, A28, 700; https://doi.org/10.3891/acta.chem.scand.28a-0700.Suche in Google Scholar

114. Piehler, D., Kot, W. K., Edelstein, N. The 6d-5f fluorescence spectra of PaCl62− in Cs2ZrCl6 crystal. J. Chem. Phys. 1991, 94, 942; https://doi.org/10.1063/1.459984.Suche in Google Scholar

Received: 2021-11-16
Accepted: 2021-12-14
Published Online: 2022-04-21
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial: Diamond Jubilee Issue
  3. Sixty years of Radiochimica Acta: a brief overview with emphasis on the last 10 years
  4. A. Chemistry of Radioelements
  5. Five decades of GSI superheavy element discoveries and chemical investigation
  6. Chemistry of the elements at the end of the actinide series using their low-energy ion-beams
  7. Sonochemistry of actinides: from ions to nanoparticles and beyond
  8. Theoretical insights into the reduction mechanism of neptunyl nitrate by hydrazine derivatives
  9. The speciation of protactinium since its discovery: a nightmare or a path of resilience
  10. On the volatility of protactinium in chlorinating and brominating gas media
  11. The aqueous chemistry of radium
  12. B. Energy Related Radiochemistry
  13. Selective actinide(III) separation using 2,6-bis[1-(propan-1-ol)-1,2,3-triazol-4-yl]pyridine (PyTri-Diol) in the innovative-SANEX process: laboratory scale counter current centrifugal contactor demonstration
  14. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies
  15. Uranium adsorption – a review of progress from qualitative understanding to advanced model development
  16. Targeted synthesis of carbon-supported titanate nanofibers as host structure for nuclear waste immobilization
  17. Progress of energy-related radiochemistry and radionuclide production in the Republic of Korea
  18. C. Nuclear Data
  19. How accurate are half-life data of long-lived radionuclides?
  20. Status of the decay data for medical radionuclides: existing and potential diagnostic γ emitters, diagnostic β+ emitters and therapeutic radioisotopes
  21. An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan
  22. An overview of activation cross-section measurements of some neutron and charged-particle induced reactions in Bangladesh
  23. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group
  24. Nuclear data for light charged particle induced production of emerging medical radionuclides
  25. D. Radionuclides and Radiopharmaceuticals
  26. The role of chemistry in accelerator-based production and separation of radionuclides as basis for radiolabelled compounds for medical applications
  27. Production of neutron deficient rare earth radionuclides by heavy ion activation
  28. Evaluation of 186WS2 target material for production of high specific activity 186Re via proton irradiation: separation, radiolabeling and recovery/recycling
  29. Special radionuclide production activities – recent developments at QST and throughout Japan
  30. China’s radiopharmaceuticals on expressway: 2014–2021
  31. E. Environmental Radioactivity
  32. A summary of environmental radioactivity research studies by members of the Japan Society of Nuclear and Radiochemical Sciences
Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2021-1126/pdf?lang=de
Button zum nach oben scrollen