Abstract
Results from batch type experiments were modeled using the 2 SPNE SC/CE model developed by Bradbury and Baeyens. This work focused on the applicability of this model to the sorption of Np(V) on Na-montmorillonite under high saline conditions (0.1–3.0 M NaCl) in the pH range of 2–10 and in the presence of dissolved CO2 (p(CO2) = 10−3.3 atm). Under ambient air conditions two additional surface complexation species had to be taken into account, which are ternary species involving one carbonate ligand (≡SONpO2(CO3)2−, ≡SONpO2(CO3)Na−). The gained set of complexation parameters was successfully tested over a wide range of Np(V) concentrations (10−4 to 10−12 M) under Ar atmosphere and ambient air condition.
Dedicated to: The memory of Prof. Dr. Günter Herrmann.
Acknowledgement
This work was financially supported by the Federal Ministry for Economic Affairs and Energy under contract No. 02E10981 and 02E11415A. We thank T. Billington, A. Damm and Ch. Fuhr for the experimental assistance. Furthermore, we thank B. Baeyens and M. Marques Fernandes at Paul Scherrer Institute (PSI/LES) for their valuable comments and suggestions.
Appendix
Buffer solutions used in the batch sorption experiments [13].
| Buffer | pKa | pH range |
|---|---|---|
| AA (acetic acid) | 4.76 | 4.3–5.3 |
| MES (2-(N-morpholino)ethanesulfonic acid) | 6.15 | 5.7–6.7 |
| MOPS (3-(N-morpholino)propanesulfonic acid) | 7.20 | 6.8–7.7 |
| TRIS (Tris(hydroxymethyl)aminomethane) | 8.06 | 7.5–8.5 |
| CHES (2-(cyclohexylamino)ethanesulfonic acid) | 9.55 | 9.0–10.0 |
Experimental conditions of the batch sorption experiments.
| [Np(V)] mol/L | Atmosphere | pH | S/L ratio g/L | Liquid phase | Figure |
|---|---|---|---|---|---|
| 8×10−6 | Ar | 6–10 | 4–10 | 0.1 M NaCl | 1 |
| 8×10−6 | Ar | 6–10 | 4–10 | 1.0 M NaCl | 1 |
| 3.5×10−12 | Ambient air | 2.5–9 | 17 | 0.1 M NaCl | 2, 3 |
| 3.5×10−12 | Ambient air | 5–9 | 17 | 1.0 M NaCl | 2, 3 |
| 1×10−8 | Ambient air | 6–9 | 3 | 3.0 M NaCl | 2, 3 |
| 10−6–10−12 | Ambient air | 8 | 10 | 0.1 M NaCl | 4 |
| 10−4–10−11 | Ar | 8.5 | 4 | 0.1 M NaCl | 5 |
| 10−4–10−11 | Ar | 8.5 | 4 | 1.0 M NaCl | 5 |
| 10−4–1011 | Ar | 8.5 | 4 | 3.0 M NaCl | 5 |
Used complexation constants for the aquatic speciation.
| Reaction | log K0 | Reference |
|---|---|---|
| 1.27a | [39] | |
| 10.329±0.020 | [39] | |
| −11.3±0.7 | [33] | |
| −23.6±0.5 | [33] | |
| 4.96±0.06 | [33] | |
| 6.53±0.10 | [33] | |
| 5.50±0.15 | [33] | |
| −5.30±1.17 | [33] |
aCalculated from ΔfG0 values.
Used SIT parameters [39].
| Species 1 | Species 2 | ε |
|---|---|---|
| Na+ | −0.08±0.03 | |
| Na+ | 0.00±0.02 | |
| OH− | Na+ | 0.04±0.01 |
| NpO2(CO3)− | Na+ | −0.18±0.15 |
| Na+ | −0.33±0.17 | |
| Na+ | −0.53±0.19 | |
| NpO2(CO3)2OH4− | Na+ | −0.40±0.19 |
| Na+ | −0.01±0.07 | |
| H+ | Cl− | 0.12±0.01 |
| Cl− | 0.09±0.05 | |
| Na+ | Cl− | 0.03±0.01 |
References
1. Hoth, P., Wirth, H., Reinhold, K., Bräuer, V., Krull, P., Feldrappe, H.: Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands: Untersuchung und Bewertung von Tongesteinsformationen, BGR, Berlin/Hannover, Germany (2007), p. 118.Suche in Google Scholar
2. Kienzler, B., Bosbach, D., Bauer, A., Niemann, L., Smailos, E., Zimmer, P.: Sicherheitstechnische Einzelfragen, Karlsruhe, Germany (2003), p. 75.Suche in Google Scholar
3. Nagra; Projekt Opalinuston: Synthese der geowissenschaftlichen Untersuchungsergebnisse – Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle Technical Report NTB 02-03, Wettingen, Switzerland (2002), p. 659.Suche in Google Scholar
4. Nagra; Project Opalinus Clay: Safety Report – Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis), Nagra Technical Report NTB 02-05, Wettingen, Switzerland (2002), p. 360.Suche in Google Scholar
5. Gompper, K.: Zur Abtrennung langlebiger Radionuklide, In: “Radioaktivität und Kernenergie”, Forschungszentrum Karlsruhe, Karlsruhe, Germany (2001), p. 154.Suche in Google Scholar
6. Choppin, G. R., Rao, L. F.: Complexation of pentavalent and hexavalent actinides by fluoride. Radiochim. Acta 37, 143 (1984).10.1524/ract.1984.37.3.143Suche in Google Scholar
7. Turner, D. R., Pabalan, R. T., Bertetti, F. P.: Neptunium(V) sorption on montmorillonite: an experimental and surface complexation modeling study. Clays Clay Miner. 46, 256 (1998).10.1346/CCMN.1998.0460305Suche in Google Scholar
8. Gorgeon, L.: Contribution à la modélisation physico-chimique de la rétention de radioéléments à vie longue par des matériaux argileux, Thesis, Université Paris 6 (1994), p. 201.Suche in Google Scholar
9. Kasar, S., Kumar, S., Kar, A., Bajpai, R. K., Kaushik, C. P., Tomar, B. S.: Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay. J. Radioanal. Nucl. Chem. 300, 71 (2014).10.1007/s10967-014-2943-2Suche in Google Scholar
10. Li, P., Liu, Z., Ma, F., Shi, Q., Guo, Z., Wu, W.: Effects of pH, ionic strength and humic acid on the sorption of neptunium(V) to Na-bentonite. J. Mol. Liq. 206, 285 (2015).10.1016/j.molliq.2015.02.014Suche in Google Scholar
11. Nagasaki, S., Saito, T., Yang, T. T.: Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions. J. Radioanal. Nucl. Chem. 308, 143 (2016).10.1007/s10967-015-4332-xSuche in Google Scholar
12. Fröhlich, D. R.: Sorption of neptunium on clays and clay minerals – a review. Clays Clay Miner. 63, 262 (2015).10.1346/CCMN.2015.0630402Suche in Google Scholar
13. Baeyens, B., Bradbury, M. H.: A mechanistic description of Ni and Zn sorption on Na-montmorillonite: part I: titration and sorption measurements. J. Contam. Hydrol. 27, 199 (1997).10.1016/S0169-7722(97)00008-9Suche in Google Scholar
14. Bradbury, M. H., Baeyens, B.: A mechanistic description of Ni and Zn sorption on Na-montmorillonite: part II: modelling. J. Contam. Hydrol. 27, 223 (1997).10.1016/S0169-7722(97)00007-7Suche in Google Scholar
15. Dähn, R., Baeyens, B., Bradbury, M. H.: Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS – the strong/weak site concept in the 2SPNE SC/CE sorption model. Geochim. Cosmochim. Acta 75, 5154 (2011).10.1016/j.gca.2011.06.025Suche in Google Scholar
16. Bradbury, M. H., Baeyens, B.: Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 66, 2325 (2002).10.1016/S0016-7037(02)00841-4Suche in Google Scholar
17. Bradbury, M. H., Baeyens, B., Geckeis, H., Rabung, T.: Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: surface complexation modelling. Geochim. Cosmochim. Acta 69, 5403 (2005).10.1016/j.gca.2005.06.031Suche in Google Scholar
18. Bradbury, M. H., Baeyens, B.: Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim. Cosmochim. Acta 69, 875 (2005).10.1016/j.gca.2004.07.020Suche in Google Scholar
19. Bradbury, M. H., Baeyens, B.: Modelling sorption data for the actinides Am(III), Np(V) and Pa(V) on montmorillonite. Radiochim. Acta 94, 619 (2006).10.1524/ract.2006.94.9-11.619Suche in Google Scholar
20. Bradbury, M. H., Baeyens, B.: Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004 (2009).10.1016/j.gca.2008.11.016Suche in Google Scholar
21. Bradbury, M. H., Baeyens, B.: Predictive sorption modelling of Ni(II), Co(II), Eu(III), Th(IV) and U(VI) on MX-80 bentonite and Opalinus Clay: a “bottom-up” approach. Appl. Clay Sci. 52, 27 (2011).10.1016/j.clay.2011.01.022Suche in Google Scholar
22. Wendt, S.: Sorption and direct speciation of neptunium(V) on aluminium oxide and montmorillonite, Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany (2009), p. 233.Suche in Google Scholar
23. Marques Fernandes, M., Vér, N., Baeyens, B.: Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl. Geochem. 59, 189 (2015).10.1016/j.apgeochem.2015.05.006Suche in Google Scholar
24. Nagasaki, S.; Sorption properties of Np on shale, illite and bentonite under saline, oxidizing and reducing conditions, NWMO-TR-2018-02, Toronto, Canada (2018), p. 87.Suche in Google Scholar
25. Müller-Vonmoos, M., Kahr, G.: Mineralogische Untersuchungen von Wyoming Bentonit MX-80 und Montigel, Nagra Technical Report NTB 83-12, Wettingen, Switzerland (1983), p. 15.10.1007/978-3-642-82131-8_6Suche in Google Scholar
26. Clariant Produkte (Deutschland) GmbH: Product information.Suche in Google Scholar
27. Amayri, S., Jermolajev, A., Reich, T.: Neptunium(V) sorption on kaolinite. Radiochim. Acta 99, 349 (2011).10.1524/ract.2011.1838Suche in Google Scholar
28. Fanghänel, T., Neck, V., Kim, J. I.: The ion product of H2O dissociation constants of H2CO3 and Pitzer parameters in the system Na+/H+/OH−/HCO3−/CO32−/ClO4−/H2O at 25 °C. J. Sol. Chem. 25, 327 (1996).10.1007/BF00972890Suche in Google Scholar
29. Gustafsson, J. P.: Visual MINTEQ v 3.1. Swedish Royal Institute of Technology (KTH), https://vminteq.lwr.kth.se (accessed on 20 April 2019).Suche in Google Scholar
30. Perrin, D. D., Dempsey, B.: Buffers for pH and Metal Ion Control, John Wiley & Sons, Inc., New York, USA (1974), p. 176.Suche in Google Scholar
31. Nagasaki, S., Tanaka, S.: Sorption equilibrium and kinetics of NpO2+ on dispersed particles of Na-montmorillonite. Radiochim. Acta 88, 705 (2000).10.1524/ract.2000.88.9-11.705Suche in Google Scholar
32. Gaines, G. L., Thomas, H. C.: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phys. 21, 714 (1953).10.1063/1.1698996Suche in Google Scholar
33. Thoenen, T., Hummel, W., Berner, U., Curti, E.: The PSI/Nagra chemical thermodynamic database 12/07, PSI Bericht Nr. 14-04, Villigen (2014), p. 416.Suche in Google Scholar
34. Kinniburgh, D., Cooper, D.: PhreePlot – Creating graphical output with PHREEQC, http://www.phreeplot.org (accessed 20 April 2019).Suche in Google Scholar
35. Parkhurst, D. L., Appelo, C. A. J.: User’s guide to PHREEQC (version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resources Investigations Report 99-4259, Denver, USA (1999), p. 312.Suche in Google Scholar
36. Gückel, K., Rossberg, A., Müller, K., Brendler, V., Bernhard, G., Foerstendorf, H.: Spectroscopic identification of binary and ternary surface complexes of Np(V) on gibbsite. Environ. Sci. Technol. 47, 14418 (2013).10.1021/es4034183Suche in Google Scholar PubMed
37. Schnurr, A., Marsac, R., Rabung, T., Lützenkirchen, J., Geckeis, H.: Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim. Cosmochim. Acta 151, 192 (2015).10.1016/j.gca.2014.11.011Suche in Google Scholar
38. Neck, V., Runde, W., Kim, J. I., Kanellakopulos, B.: Solid-liquid equilibrium reactions of neptunium(V) in carbonate solution at different ionic-strength. Radiochim. Acta 65, 29 (1994).Suche in Google Scholar
39. Rand, M., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium, OECD-NEA, Paris, France (2007), p. 900.Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium
Artikel in diesem Heft
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium