Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
-
Aleksandr N. Vasiliev
Abstract
Natural clay rocks like Opalinus (OPA) and Callovo-Oxfordian (COx) clay rock are considered as potential host rocks for deep geological disposal of nuclear waste. However, small organic molecules such as propionate and lactate exist in clay rock pore water and might enhance Np mobility through a complexation process. Therefore, reliable complex formation data are required in the frame of the Safety Case for a nuclear waste repository. A solvent extraction technique was applied for the determination of
Dedicated to: The memory of Professor Günter Herrmann.
Acknowledgements
Günter Herrmann was my (C.M. Marquardt) doctoral thesis supervisor. In those days he gave me the opportunity to work in the framework of a R&D Programme of the European Commission on Management of Radioactive Waste and Storage. The here presented work shows that this scientific issue is still up-to-date and that I remained true to this branch of science to date. This work has been supported by the German Federal Ministry of Economic Affairs and Energy (BMWi) under Contract No. 02E10961 and German Academic Exchange Service (DAAD). Bundesministerium für Wirtschaft und Technologie.
References
1. Kim, J. I.: Chemical behaviour of transuranic elements in natural aquatic systems, In: A. J. Freeman (Ed.), Handbook on the Physics and Chemistry of the Actinides (1986), Elsevier Science Publishers, B. V., Amsterdam, p. 413.Search in Google Scholar
2. Choppin, G. R., Rao, L. F.: Complexation of pentavalent and hexavalent actinides by fluoride. Radiochim. Acta 37, 143 (1984).10.1524/ract.1984.37.3.143Search in Google Scholar
3. Forbes, T. Z., Wallace, C., Burns, P. C.: Neptunyl compounds: polyhedron geometries, bond-valence parameters, and structural hierarchy. Can. Mineral. 46, 1623 (2008).10.3749/canmin.46.6.1623Search in Google Scholar
4. ONDRAF/NIRAS, SAFIR 2: Safety assessment and feasibility interim report, NIROND-2001-06 E, ONDRAF/NIRAS, Brussels/Belgium (2001).Search in Google Scholar
5. OECD: Safety of geological disposal of high-level and longlived radioactive waste in France – an international peer review of the “Dossier 2005 Argile” concerning disposal in the Callovo-Oxfordian formation, NEA No. 6178, OECD Organization for economic cooperation and development (2006).Search in Google Scholar
6. Hoth, P., Wirth, H., Reinhold, K., Bräuer, V., Krull, P., Feldrappe, H.: Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands – Untersuchung und Bewertung von Tongesteinsformationen, BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover/Germany (2007).Search in Google Scholar
7. Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Isolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Appl. Geochem. 22, 1537 (2007).10.1016/j.apgeochem.2007.04.001Search in Google Scholar
8. Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay. Appl. Geochem. 22, 2926 (2007).10.1016/j.apgeochem.2007.09.001Search in Google Scholar
9. Geological disposal of radioactive waste: technological implications for retrievability, IAEA nuclear energy series, NW-T-1.19, ISSN 1995-7807, International Atomic Energy Agency, Vienna, Austria (2009).Search in Google Scholar
10. Askarieh, M. M., Hansford, M. I., Staunton, S., Rees, L. V. C.: Complexation of Np (V) in aqueous solutions (No. DOE-HMIP-RR-92.018). Department of the Environment, London, UK (1992).Search in Google Scholar
11. Vasiliev, A. N., Banik, N. L., Marsac, R., Froehlich, D. R., Rothe, J., Kalmykov, S. N., Marquardt, C. M.: Np(V) complexation with propionate in 0.5–4 M NaCl solutions at 20–85 °C. Dalton Trans. 44, 3837 (2015).10.1039/C4DT03688CSearch in Google Scholar PubMed
12. Moore, R. C., Borkowski, M., Bronikowski, M. G., Chen, J., Pokrovsky, O. S., Xia, Y., Choppin, G. R.: Thermodynamic modeling of actinide complexation with acetate and lactate at high ionic strength. J. Sol. Chem. 28, 521 (1999).10.1023/A:1022678814904Search in Google Scholar
13. Tochiyama, O., Inoue, Y., Narita, S.: Complex formation of Np(V) with various carboxylates. Radiochim. Acta 58, 129 (1992).10.1524/ract.1992.5859.1.129Search in Google Scholar
14. Eberle, S. H., Schaefer, J. B.: Stabilitätskonstanten der Komplexe des Neptunyl(V)-lons mit α-Hydroxykarbonsäuren. J. Inorg. Nucl. Chem. 31, 1523 (1969).10.1016/0022-1902(69)80272-1Search in Google Scholar
15. Carbonaro, R. F., Di Toro, D. M.: Linear free energy relationships for metal-ligand complexation. Geochim. Cosmochim. Acta 71, 3958 (2007).10.1016/j.gca.2007.06.005Search in Google Scholar
16. Claret, F., Schaefer, T., Rabung, T., Wolf, M., Bauer, A., Buckau, G.: Differences in properties and Cm(III) complexation behavior of isolated humic and fulvic acid derived from Opalinus clay and Callovo-Oxfordian argillite. Appl. Geochem. 20, 1158 (2005).10.1016/j.apgeochem.2005.01.008Search in Google Scholar
17. Sjoblom, R., Hindman, J. C.: Spectrophotometry of neptunium in perchloric acid solutions. J. Am. Chem. Soc. 73, 1744 (1951).10.1021/ja01148a091Search in Google Scholar
18. Marsac, R., Banik, N. L., Lützenkirchen, J., Marquardt, C. M., Dardenne, K., Schild, D., Rothe, J., Diascorn, A., Kupcik, T., Schäfer, T., Geckeis, H.: Neptunium redox speciation at the illite surface. Geochim. Cosmochim. Acta 152, 39 (2015).10.1016/j.gca.2014.12.021Search in Google Scholar
19. Inoue, Y., Tochiyama, O.: Solvent extraction of neptunium(V) by thenoyltrifluoroacetone and 1,10-phenanthroline or tri-n-octylphosphine oxide. Radiochim. Acta 31, 193 (1982).10.1524/ract.1982.31.34.193Search in Google Scholar
20. Choppin, G. R., Chen, J.-F.: Complexation of Am(III) by oxalate in NaClO4 media. Radiochim. Acta 74, 105 (1996).10.1524/ract.1996.74.special-issue.105Search in Google Scholar
21. Choppin, G. R., Erten, H. N., Xia Y.-X.: Variation of stability constants of thorium citrate complexes with ionic strength. Radiochim. Acta 74, 123 (1996).10.1524/ract.1996.74.special-issue.123Search in Google Scholar
22. Rao, L., Srinivasan, T. G., Garnov, A. Y., Zanonato, P., Di Bernardo, P., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10–85 °C). Geochim. Cosmochim. Acta 68, 4821 (2004).10.1016/j.gca.2004.06.007Search in Google Scholar
23. Maya, L.: Hydrolysis and carbonate complexation of dioxoneptunium(V) in 1.0 M NaClO4 at 25 °C. Inorg. Chem. 22, 2093 (1983).10.1021/ic00156a031Search in Google Scholar
24. Wruck, D. A., Palmer, C. E. A., Silva, R. J.: A study of americium(III) carbonate complexation at elevated temperatures by pulsed laser photoacoustic spectroscopy. Radiochim. Acta 85, 21 (1999).10.1524/ract.1999.85.12.21Search in Google Scholar
25. Götz, C., Geipel, G., Bernhard, G.: The influence of the temperature on the carbonate complexation of uranium(VI) – a spectroscopic study. J. Radioanal. Nucl. Chem. 287, 961 (2011).10.1007/s10967-010-0854-4Search in Google Scholar
26. Altmaier, M., Metz, V., Neck, V., Müller, R., Fanghänel, T.: Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25 °C. Geochim. Cosmochim. Acta 67, 3595 (2003).10.1016/S0016-7037(03)00165-0Search in Google Scholar
27. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., Singh, R. M.: Hydrogen ion buffers for biological research. Biochemistry 5, 467 (1966).10.1021/bi00866a011Search in Google Scholar PubMed
28. Zolotov, Y. A., Alimarin, I. P.: Investigation of the chemistry of pentavalent neptunium. J. Inorg. Nucl. Chem. 25, 691 (1963).10.1016/0022-1902(63)80159-1Search in Google Scholar
29. Rao, L., Tian, G., Srinivasan, T. G., Zanonato, P., Di Bernardo, P.: Spectrophotometric and calorimetric studies of Np(V) complexation with acetate at various temperatures from T=283 to 343 K. J. Sol. Chem. 39, 1888 (2010).10.1007/s10953-010-9592-zSearch in Google Scholar
30. Bromley, L. A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313 (1973).10.1002/aic.690190216Search in Google Scholar
31. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D. A., Rand, M. H.: Chemical thermodynamics Vol. 5. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD, NEA-TDB, North Holland, Amsterdam (2003).Search in Google Scholar
32. Tian, G., Martin, L. R., Rao, L.: Complexation of lactate with neodymium(III) and europium(III) at variable temperatures. Inorg. Chem. 49, 10598 (2010).10.1021/ic101592hSearch in Google Scholar PubMed
33. Choppin, G. R.: Inner vs outer sphere complexation of f-elements. J. Alloys Compd. 249, 9 (1997).10.1016/S0925-8388(96)02833-2Search in Google Scholar
34. Neck, V., Fanghänel, Th., Rudolph, K., Kim, J. I.: Thermodynamics of neptunium(V) in concentrated salt solutions: chloride complexation and ion interaction (Pitzer) parameters for the NpO2 ion. Radiochim. Acta 69, 39 (1995).10.1524/ract.1995.69.1.39Search in Google Scholar
35. Froehlich, D. R., Skerencak-Frech, A., Morkos, M.-L. K., Panak, P. J.: A spectroscopic study of Cm (III) complexation with propionate in saline solutions at variable temperatures. New J. Chem. 37, 1520 (2013).10.1039/c3nj00109aSearch in Google Scholar
36. Silva, R. J., Bidoglio, G., Rand, M. H., Robouch, P., Wanner, H., Puigdomenech, I.: Chemical thermodynamics Vol. 2, Chemical thermodynamics of americium. OECD, NEA-TDB, North Holland, Amsterdam (1995).Search in Google Scholar
37. Jiang, J., Rao, L., Di Bernardo, P., Zanonato, P. L., Bismondo, A.: Complexation of uranium(VI) with acetate at variable temperatures. J. Chem. Soc. Dalton Trans. 8, 1832 (2002).10.1039/b106642kSearch in Google Scholar
38. Ahrland, S.: How to distinguish between inner and outer sphere complexes in aqueous solution. Thermodynamic and other criteria. Coord. Chem. Rev. 8, 21 (1972).10.1016/S0010-8545(00)80047-8Search in Google Scholar
39. Fröhlich, D. R., Skerencak-Frech, A., Kaplan, U., Koke, C., Rossberg, A., Panak, P. J.: An EXAFS spectroscopic study of Am(III) complexation with lactate. J. Synchrotron. Radiat. 22, 1469 (2015).10.1107/S1600577515017853Search in Google Scholar PubMed
40. Barkleit, A., Kretzschmar, J., Tsushima, S., Acker, M.: Americium(III) and europium(III) complex formation with lactate at elevated temperatures studied by spectroscopy. Dalton Trans. 43, 11221 (2014).10.1039/C4DT00440JSearch in Google Scholar PubMed
41. Choppin, G. R., Friedman, Jr. H. G.: Complexes of trivalent lanthanide ions. III. Bidentate chelates. Inorg. Chem. 5, 1599 (1966).10.1021/ic50043a029Search in Google Scholar
42. Parkhurst, D. L., Appelo, C. A. J.: User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculation. Water-resources Investigation Report, 99-4259, USGS, Denver, Colorado (1999).Search in Google Scholar
43. Bradbury, M. H., Baeyens, B.: Predictive sorption modelling of Ni(II), Co(II), Eu(IIII), Th(IV) and U(VI) on MX-80 bentonite and Opalinus clay, a “bottom-up” approach. Appl. Clay Sci. 52, 2 (2011).10.1016/j.clay.2011.01.022Search in Google Scholar
44. Marsac, R., Banik, N. L., Lützenkirchen, J., Catrouillet, C., Marquardt, C. M., Johannesson, K. H.: Modeling metal ion-humic substances complexation in highly saline conditions. Appl. Geochem. 79, 52 (2017).10.1016/j.apgeochem.2017.02.004Search in Google Scholar
45. Marsac, R., Banik, N. L., Lützenkirchen, J., Diascorn, A., Bender, K., Marquardt, C. M., Geckeis, H.: Sorption and redox speciation of plutonium on illite under saline conditions. J. Colloid Interface Sci. 485, 59 (2017).10.1016/j.jcis.2016.09.013Search in Google Scholar PubMed
46. Banik, N. L., Marsac, R., Lützenkirchen, J., Marquardt, C. M., Dardenne, K., Rothe, J., Bender, K., Geckeis, H.: Neptunium sorption and redox speciation at the illite surface under highly saline conditions. Geochim. Cosmochim. Acta 215, 421 (2017).10.1016/j.gca.2017.08.008Search in Google Scholar
47. Bradbury, M. H., Baeyens, B.: Sorption modeling on illite. Part II: Actinide sorption and linear free energy relationships. Geochim. Cosmochim. Acta 73, 1004 (2009).10.1016/j.gca.2008.11.016Search in Google Scholar
48. Gaines, G. I., Thomas, H. C.: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Phys. Chem. 21, 714 (1953).10.1063/1.1698996Search in Google Scholar
49. Bradbury, M. H., Baeyens, B.: Sorption modeling on illite. Part I: titration measurements and the sorption of Ni, Co, Eu and Sn. Geochim. Cosmochim. Acta 73, 990 (2009).10.1016/j.gca.2008.11.017Search in Google Scholar
50. Fröhlich, D. R., Amayri, S., Drebert, J., Reich, T.: Influence of temperature and background electrolyte on the sorption of neptunium(V) on Opalinus clay. Appl. Clay Sci. 69, 43 (2012).10.1016/j.clay.2012.08.004Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium
Articles in the same Issue
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium