Abstract
Fission products recoiling from a 252Cf spontaneous fission source were stopped in various mixtures of inert gases containing CO and NO. For the elements of the transisition metal series Mo, Tc, Ru, and Rh previous observations of pure carbonyl complexes were reproduced. However, no formation of volatile mixed nitrosyl-carbonyl complexes or pure nitrosyl complexes for these elements have been observed. Instead, efficient production of volatile nitrosyl compounds for single iodine atoms, presumably nitrosyl iodide, NOI, was detected. This observation is of interest as potential transport path for iodine in nuclear accident scenarios and as a model for radiochemistry with the recently discovered heaviest halogen tennessine (Z=117).
Dedicated to: The memory of Professor Günter Herrmann.
References
1. Türler, A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).10.1021/cr3002438Suche in Google Scholar PubMed
2. Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z≥104 in gas phase. Nucl. Phys. A 944, 640 (2015).10.1016/j.nuclphysa.2015.09.012Suche in Google Scholar
3. Even, J., Yakushev, A., Duellmann, C. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer D.: Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions. Inorg. Chem. 51(12), 6431 (2012).10.1021/ic300305mSuche in Google Scholar PubMed
4. Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).10.1016/j.nuclphysa.2015.04.007Suche in Google Scholar
5. Even, J., Yakushev, A., Duellmann, C. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer D.: In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 102, 1093 (2014).10.1515/ract-2013-2198Suche in Google Scholar
6. Wang, Y., Qin, Z., Fan, F. L., Fan, F. Y., Cao, S. W., Wu, X. L., Zhang, X., Bai, J., Yin, X. J., Tian, L. L., Zhao, L., Tian, W., Li, Z., Tan, C. M., Guo, J. S., Gaggeler, H. W.: Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 102, 69 (2014).10.1515/ract-2014-2157Suche in Google Scholar
7. Wang, Y., Qin, Z., Fan, F.L., Haba, H., Komori, Y., Wu, X., Tan, C., Zhang, X.: Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 17(20), 13228 (2015).10.1039/C5CP00979KSuche in Google Scholar PubMed
8. Even, J., Ackermann, D., Asai, M., Block, M., Brand, H., Di Nitto, A., Düllmann, Ch. E., Eichler, R., Fan, F., Haba, H., Hartmann, W., Hübner, A., Heßberger, F. P., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Laatiaoui, M., Lommel, B., Maurer, J., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Sato, T. K., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: In situ synthesis of volatile carbonyl complexes with short-lived nuclides. J. Radioanal. Nucl. Chem. 303, 2457 (2015).10.1007/s10967-014-3793-7Suche in Google Scholar
9. Cao, S., Wang, Y., Qin, Z., Fan, F. Y., Haba, H., Komori, Y., Wu, X., Tan, C., Zhang, X.: Gas-phase chemistry of ruthenium and rhodium carbonyl complexes. Phys. Chem. Chem. Phys. 18, 119 (2016).10.1039/C5CP05670ESuche in Google Scholar PubMed
10. Even, J., Yakushev, A., Düllmann, C. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seaborgium carbonyl complex. Science 345(6203), 1491 (2014).10.1126/science.1255720Suche in Google Scholar PubMed
11. Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Di Nitto, A., Düllmann, C. E., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T. K., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z.: Decomposition studies of group 6 hexacarbonyl complexes. Part 1: production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 104, 141 (2016).10.1515/ract-2015-2445Suche in Google Scholar
12. Usoltsev, I., Eichler, R., Türler, A.: Decomposition studies of group 6 hexacarbonyl complexes. Part 2: modelling of the decomposition process. Radiochim. Acta 104, 531 (2016).10.1515/ract-2015-2447Suche in Google Scholar
13. Nash, C. S., Bursten, B. E.: Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 121, 10830 (1999).10.1021/ja9928273Suche in Google Scholar
14. Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J. Chem. Phys. 138, 174301 (2013).10.1063/1.4802765Suche in Google Scholar PubMed
15. Iliaš, M., Pershina, V.: Hexacarbonyls of Mo, W, and Sg: Metal−CO bonding revisited. Inorg. Chem. 56, 1638 (2017).10.1021/acs.inorgchem.6b02759Suche in Google Scholar PubMed
16. Monacada, S., Palmer, M. J., Higgs, E. A.: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43(2), 109 (1991).Suche in Google Scholar PubMed
17. Shafirovich, V., Lymar, S. V.: Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide. PNAS 99(11), 7340 (2002).10.1073/pnas.112202099Suche in Google Scholar PubMed PubMed Central
18. Rattat, D., Verbruggen, A., Berke, H., Alberto, R.: Exploring the nitrosyl approach: “Re(CO)2(NO)” and “Tc(CO)2(NO)” complexes provide new pathways for bioorganometallic chemistry. J. Organometal. Chem. 689, 4833 (2004).10.1016/j.jorganchem.2004.09.074Suche in Google Scholar
19. Wang, X., Zhou, M., Andrews, L.: Manganese carbonyl nitrosyl complexes in solid argon: infrared spectra and density functional calculations. J. Phys. Chem. A 104, 7964 (2000).10.1021/jp001370cSuche in Google Scholar
20. Richter-Addo, G. B., Legzdins, P.: Recent organometallic nitrosyl chemistry. Chem. Rev. 88, 991 (1988).10.1021/cr00089a001Suche in Google Scholar
21. Hollemann A. F., Wiberg E.: In: Inorganic Chemistry 100th ed. (1985). W. de Gruyter, Berlin and New York, p. 597.Suche in Google Scholar
22. Beckham, L. J., Fessler, W.A., Kise M. A.: Nitrosyl chloride. Chem. Rev. 48(3), 319 (1951).10.1021/cr60151a001Suche in Google Scholar PubMed
23. Gay-Lussac, J. L.: Extrait d’un Mémoire sur l’eau régale. Compt. Rend. 26, 619 (1848).Suche in Google Scholar
24. Loock, H.-P., Qian, C. X. W.: Photodissociation studies on nitrosyl bromide: I. Photofragment spectroscopy and electronic structure. J. Chem. Phys. 108, 3178 (1998).10.1063/1.475714Suche in Google Scholar
25. Bailleuxa, S., Duflota, D., Aibab, S., Nakahamab, S., Ozekiba, H.: Nitrosyl iodide, INO: a combined ab initio and high-resolutionspectroscopic study. Chem. Phys. Lett. 650, 73 (2016).10.1016/j.cplett.2016.02.069Suche in Google Scholar
26. O’Driscoll, P., Minogue, N., Takenaka, N., Sodeau, J.: Release of nitric oxide and iodine to the atmosphere from the freezing of sea-salt aerosol components. J. Phys. Chem. A 112(8), 1677 (2008).10.1021/jp710464cSuche in Google Scholar PubMed
27. O’Neill, E., Hinrichs, R. Z.: Production of molecular iodine from the heterogeneous reaction of nitrogen dioxide with solid potassium iodide, J. Geophys. Res. 116, D01301 (2011).10.1029/2010JD014880Suche in Google Scholar
28. Eichler, R., Eichler, B.: Thermochemical data from gas-phase adsorption and methods of their estimation. In: The Chemistry of Superheavy Elements (2014). Schädel M.; Shaughnessy D. (eds.). Springer Verlag, Berlin Heidelberg, p. 375.10.1007/978-3-642-37466-1_7Suche in Google Scholar
29. Chase, M. W., Jr.: In: NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data 9, 1 (1998).Suche in Google Scholar
30. Hermann, A., Hoffmann, R., Ashcroft, N. W.: Condensed astatine: monatomic and metallic. Phys. Rev. Lett. 111, 116404 (2013).10.1103/PhysRevLett.111.116404Suche in Google Scholar PubMed
31. Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z=114. Kernenergie 19, 307 (1976).Suche in Google Scholar
32. Borschevsky, A., Pasteka, F., Pershina, V., Eliav E., Kaldor U.: Ionization potentials and electron affinities of the superheavy elements 115–117 and their sixth-row homologues Bi, Po, and At. Phys. Rev. A 91, 020501 (2015).10.1103/PhysRevA.91.020501Suche in Google Scholar
33. Düllmann, C. E., Eichler, B., Eichler, R., Gäggeler, H. W., Jost, D., Kindler, U., Piguet, D., Soverna, S., Törle, P., Trautmann, N., Türler, A.: Miss Piggy, a californium-252 fission fragment source as a generator of short-lived radionuclides. Nucl. Instr. Meth. A 512, 595 (2003).10.1016/S0168-9002(03)01932-6Suche in Google Scholar
34. Oganessian, Y. T., Abdullin, F. S., Alexander, C., Binder, J., Boll, R. A., Dmitriev, S. N., Ezold, J., Felker, K., Gostic, J. M., Grzywacz, R. K., Hamilton, J. H., Henderson, R. A., Itkis, M. G., Miernik, K., Miller, D., Moody, K. J., Polyakov, A. N., Ramayya, A. V., Roberto, J. B., Ryabinin, M. A., Rykaczewski, K. P., Sagaidak, R. N., Shaughnessy, D. A., Shirokovsky, I. V., Shumeiko, M. V., Stoyer, M. A., Stoyer, N. J., Subbotin, V. G., Sukhov, A. M., Tsyganov, Y. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K.: Production and decay of the heaviest nuclei 293;294117 and 294118. Phys. Rev. Lett. 109, 162501 (2012).10.1103/PhysRevLett.109.162501Suche in Google Scholar PubMed
35. Eichler, R., Aksenov, N. V., Albin, Y. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Henderson, R. A., Johnsen, A. M., Kenneally, J. M., Lebedev, V. Y., Malyshev, O. N., Moody, K. J., Oganessian, Y. T., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Serov, A., Shaughnessy, D. A., Shishkin, S. V., Shutov, A. V., Stoyer, M. A., Stoyer, N. J., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Wilk, P. A., Wittwer, D., Yeremin, A. V.: Indication for a volatile element 114. Radiochim. Acta 98, 133 (2010).10.1524/ract.2010.1705Suche in Google Scholar
36. Neumayr, J. B., Thirolf, P. G., Habs, D., Heinz, S., Kolhinen, S. S., Sewtz, M., Szerypo, J.: Performance of the MLL-IonCatcher. Rev. Sci. Instr. 77, 065109 (2006).10.1063/1.2213154Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium
Artikel in diesem Heft
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium