Home Physical Sciences Radiochlorine: an underutilized halogen tool
Article
Licensed
Unlicensed Requires Authentication

Radiochlorine: an underutilized halogen tool

  • Suzanne E. Lapi EMAIL logo and Jonathan W. Engle
Published/Copyright: May 1, 2019

Abstract

Halogen radioisotopes have a variety of physical half-lives which are suitable for probing a wide variety of pharmacokinetic processes. Compared with other radiohalogens, relatively little work has been done with radiochlorine. However, high specific activity radioisotopes of chlorine are available from low energy cyclotron production in quantities suitable for positron emission tomography (PET) and fundamental research. In particular, the sole radioisotope of chlorine which may be used for PET imaging, 34mCl, has achieved a state of development that permits imaging in clinical settings though sparse research effort has been focused on this isotope over the last 40 years. Additionally, the other longer-lived radioisotopes of chlorine will likely continue to show utility for more traditional radiotracer studies and chemistry development.

References

1. de Beco, V., Le Bars, D., Scherrmann, J. M.: [Fluorine-18 in radiopharmacy]. Ann. Pharm. Fr. 66, 60 (2008).10.1016/j.pharma.2007.12.002Search in Google Scholar PubMed

2. Coenen, H. H., Elsinga, P. H., Iwata, R., Kilbourn, M. R., Pillai, M. R., Rajan, M. G., Wagner, H. N., Jr., Zaknun, J. J.: Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl. Med. Biol. 37, 727 (2010).10.1016/j.nucmedbio.2010.04.185Search in Google Scholar PubMed

3. Koehler, L., Gagnon, K., McQuarrie, S., Wuest, F.: Iodine-124: a promising positron emitter for organic PET chemistry. Molecules 15, 2686 (2010).10.3390/molecules15042686Search in Google Scholar PubMed PubMed Central

4. Mazière, B., Loc’h, C.: Use of bromine-76 and iodine-123 radiohalogenated tracers in the drug development process. Curr. Pharm. Des. 7, 1931 (2001).10.2174/1381612013396844Search in Google Scholar PubMed

5. Vallabhajosula, S.: (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin. Nucl. Med. 37, 400 (2007).10.1053/j.semnuclmed.2007.08.004Search in Google Scholar PubMed

6. Takei, M., Nagatsu, K., Fukumura, T., Suzuki, K.: Remote control production of an aqueos solution of no-carrier-added 34mCl- via the 32S(a,pn) nuclear reaction. J. Appl. Radiat. Isot. 65, 981 (2007).10.1016/j.apradiso.2007.04.015Search in Google Scholar PubMed

7. Engle, J. W., Barnhart, T. E., DeJesus, O. T., Nickles, R. J.: Production of 34mCl and 38Cl via the (d,a) reaction on 36Ar and natAr gas at 8.4 MeV. J. Appl. Radiat. Isot. 69, 75 (2011).10.1016/j.apradiso.2010.09.009Search in Google Scholar PubMed PubMed Central

8. NuDat, Brookhaven National Laboratory (2008). Available at: www.nndc.bnl.gov/nudat2/.Search in Google Scholar

9. Szilard, L., Chalmers, T.: Chemical separation of the radioactive element from its bombarded isotope in the fermi effect. Nature 134, 462 (1934).10.1038/134462b0Search in Google Scholar

10. Bell, R., Stocklin, G.: The preparation of carrier-free chlorine-36 via ligand recoil in K2[ReCl6] and K2[RuCl6]. Radiochim. Acta 13, 57 (1970).10.1524/ract.1970.13.1.57Search in Google Scholar

11. Fukumura, T., Takei, M., Maeda, J., Suzuki, K.: Synthesis and biodistribution of 2-[34mCl]chloro-2-deoxy-glucose in rat. J. Label. Comp. Radiopharm. 48, S159 (2005).Search in Google Scholar

12. Smith, D. J., Ernst, W., Giddings, J. M.: Distribution and chemical fate of (3)(6)Cl-chlorine dioxide gas during the fumigation of tomatoes and cantaloupe. J. Agric. Food Chem. 62, 11756 (2014).10.1021/jf504097pSearch in Google Scholar PubMed

13. Ashworth, D. J., Shaw, G.: A comparison of the soil migration and plant uptake of radioactive chlorine and iodine from contaminated groundwater. J. Environ. Radioact. 89, 61 (2006).10.1016/j.jenvrad.2006.03.006Search in Google Scholar

14. Hakk, H., Smith, D. J., Shappell, N. W.: Tissue residues, metabolism, and excretion of radiolabeled sodium chlorate (Na[36Cl]O3) in rats. J. Agric. Food Chem. 55, 2034 (2007).10.1021/jf062773ySearch in Google Scholar

15. Smith, D. J., Anderson, R. C., Huwe, J. K.: Effect of sodium [36Cl]chlorate dose on total radioactive residues and residues of parent chlorate in growing swine. J. Agric. Food Chem. 54, 8648 (2006).10.1021/jf0620160Search in Google Scholar

16. Hayashi, N., Miyahara, H., Mori, C., Takeuchi, N., Iwamoto, S., Ishikawa, I. I.: High accuracy measurement of the relative efficiency curve and determination of gamma-ray relative intensity for 38Cl. Appl. Radiat. Isot. 52, 733 (2000).10.1016/S0969-8043(99)00237-7Search in Google Scholar

17. Nagatsu, K., Fukumura, T., Takei, M., Szelecsenyi, F., Kovacs, Z., Suzuki, K.: Measurement of thick target yields of natS(a,x)34mCl nuclear reaction and estimation of its excitation function up to 70 MeV. Nucl. Instr. Meth. Phys. Res. B 266, 709 (2008).10.1016/j.nimb.2008.01.019Search in Google Scholar

18. Qaim Syed, M., Spahn, I., Scholten, B., Neumaier, B.: Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim. Acta 104, 601 (2016).10.1515/ract-2015-2566Search in Google Scholar

19. Weinreich, R., Qaim, S. M., Stocklin, G.: Cyclotron production of medically useful halogen radioisotopes. in 15th Annual Meeting of the Society of Nuclear Medicine (1977), Groningen, p. 226.Search in Google Scholar

20. Lagunas-Solar, M. C., Carvacho, O. F., Cima, R. R.: Cyclotron production of PET radionuclides: 34mCl (33.99 min; B+53%; IT 47%) with protons on natural isotope chlorine-containing targets. Int. J. Appl. Radiat. Isot. 43, 1375 (1992).10.1016/0883-2889(92)90011-3Search in Google Scholar

21. Abrams, D. N., Knaus, E. E., Wiebe, L. I., Helus, F., Maier-Borst, W.: Production of 34mCl from a gaseous hydrogen sulfide target. Int. J. Appl. Radiat. Isot. 35, 1045 (1984).10.1016/0020-708X(84)90007-3Search in Google Scholar

22. Helus, F., Gasper, H., Rettig, W., Maier-Borst, W.: Cyclotron production of 34mCl for biomedical use. J. Radioanal. Nucl. Chem. 94, 149 (1984).10.1007/BF02167975Search in Google Scholar

23. DeJesus, O. T., Converse, A. K., Nickles, R. J.: Development of 34mCl-labeled dopamine D1 agonists as PET agents. in Proceedings of the 17th International Symposium on Radiopharmaceutical Sciences. Des Moines, Iowa (2007).Search in Google Scholar

24. Zatolokin, B. V., Konstantinov, I. O., Krasnov, N. N.: Thick target yields of 34mCl and 38Cl produced by variosu charged particles on phosphorous, sulphur, and chlorine targets. Int. J. Appl. Radiat. Isot. 27, 159 (1975).10.1016/0020-708X(76)90127-7Search in Google Scholar

25. DeLuca, P. M. J., Lawson, J. C., Chagnon, P. R., Berners, E. D.: Angular correlation studies in 32S(3He,pg)34Cl. Nucl. Phys. A 173, 307 (1971).10.1016/0375-9474(71)90347-2Search in Google Scholar

26. Horosko, R. N., Shapiro, M. H.: The 36Ar(d,alpha)34Cl reaction at 19 MeV. Nucl. Phys. A 180, 37 (1971).10.1016/0375-9474(72)90154-6Search in Google Scholar

27. Williams, D. C., Irivine, J. W.: Nuclear excitation functions and thick-target yields: Zn+d and Ar40(d,alpha). Phys. Rev. 130, 265 (1963).10.1103/PhysRev.130.265Search in Google Scholar

28. Qaim, S. M.: Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim. Acta 30, 147 (1982).Search in Google Scholar

29. Zatolokin, B. V., Konstantinov, I. O., Krasnov, N. N.: Thick target yields of 34mCl and 38Cl produced by various charged particles on phosphorus, sulphur and chlorine targets. Int. J. Appl. Radiat. Isot. 27, 159 (1976).10.1016/0020-708X(76)90127-7Search in Google Scholar

30. Qaim, S. M., Stocklin, G.: Production of some medically important short-lived neutron-deficient radioisotopes of halogens. Radiochim. Acta 34, 25 (1983).10.1524/ract.1983.34.12.25Search in Google Scholar

31. Engle, J. W., Severin, G. W., Barnhart, T. E., Knutson, L. D., Nickles, R. J.: Cross sections of the 36Ar(d,α)34mCl, 40Ar(d,α)38Cl, and 40Ar(d,p)41Ar nuclear reactions below 8.4MeV. Appl. Radiat. Isot. 70, 355 (2012).10.1016/j.apradiso.2011.10.003Search in Google Scholar PubMed PubMed Central

32. Engle, J., Barnhart, T., Murali, D., DeJesus, O., Nickles, J.: Production of [Cl-34m]ClF via flow-through discharge-initiated fluorine exchange reaction. J. Labelled Comp. Radiopharm. 54, S127 (2011).Search in Google Scholar

33. Robertson, R., Germanos, G. S., Li, C., Mitchell, G. S., Cherry, S. R., Silva, M. D.: Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 54, N355 (2009).10.1088/0031-9155/54/16/N01Search in Google Scholar PubMed PubMed Central

34. Ruggiero, A., Holland, J. P., Lewis, J., Grimm, J.: Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 51, 1123 (2010).10.2967/jnumed.110.076521Search in Google Scholar PubMed PubMed Central

35. Machulla, H. J., Stocklin, G., Kupfernagel, C., Freundlieb, C., Hock, A., Vyska, K., Feinendegen, L. E.: Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77, and I-123 for metabolic studies of the myocardium: concise communicatin. J. Nucl. Med. 19, 298 (1977).Search in Google Scholar

36. Krane, K. S., Keck, M. L., Norman, E. B., Shivprasad, A. P.: Gamma-ray energies in the decay of 38Cl. Appl. Radiat. Isot. 70, 740 (2012).10.1016/j.apradiso.2011.12.033Search in Google Scholar PubMed

37. Britto, D. T., Ruth, T. J., Lapi, S., Kronzucker, H. J.: Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218, 615 (2004).10.1007/s00425-003-1137-xSearch in Google Scholar PubMed

38. Zhang, M.-R., Kumata, K., Takei, M., Fukumara, T., Suzuki, K.: How to introduce radioactive chlorine into a benzene ring using [*Cl]Cl-. Int. J. Appl. Radiat. Isot. 66, 1341 (2008).10.1016/j.apradiso.2008.04.011Search in Google Scholar PubMed

Received: 2019-01-07
Accepted: 2019-03-18
Published Online: 2019-05-01
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-0015/pdf
Scroll to top button