Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
Abstract
Resonance ionization mass spectrometry is an efficient tool to detect minute amounts of long-lived radio-isotopes in environmental samples. Applying resonant excitation and ionization with pulsed laser radiation within a hot cavity atomizer enables the sensitive detection and precise quantification of long-lived actinide isotopes. Due to the inherently element selective ionization process, this method ensures ultimate suppression of contaminations from other elements and molecules. The characterization of in-source resonance ionization of the actinide elements U, Th, Np, and Am using a compact quadrupole mass spectrometer (QMS) setup are discussed.
Dedicated to the memory of Professor Günter Herrmann.
Funding source: Bundesministerium für Bildung und Forschung
Award Identifier / Grant number: 05P12UMCIA
Funding statement: This work was supported by the Bundesministerium für Bildung und Forschung (BMBF, Germany) under the consecutive projects 05P12UMCIA, Funder Id: http://dx.doi.org/10.13039/501100002347 and 05P15UMCIA, Funder Id: http://dx.doi.org/10.13039/501100002347 as well as by the project 02NUK044B, Funder Id: http://dx.doi.org/10.13039/501100002347. Additional funds were provided by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the interdisciplinary research training group GRK 826, Funder Id: http://dx.doi.org/10.13039/501100001659 “Spurenanalytik von Elementspezies: Methodenentwicklungen und Anwendungen”.
References
1. Richter, S., Alonso, A., De Bolle, W., Wellum, R., Taylor, P. D. P.: Isotopic “fingerprints” for natural uranium ore samples. Int. J. Mass Spectrom. 193(1), 9 (1999).10.1016/S1387-3806(99)00102-5Suche in Google Scholar
2. Kristo, M. J., Gaffney, A. M., Marks, N., Knight, K., Cassata, W. S., Hutcheon, I. D.: Nuclear forensic science: analysis of nuclear material out of regulatory control. Annu. Rev. Earth Planet. Sci. 44(1), 555 (2016).10.1146/annurev-earth-060115-012309Suche in Google Scholar
3. Bürger, S., Banik, N. L., Buda, R. A., Kratz, J. V., Kuczewski, B., Trautmann, N.: Speciation of the oxidation states of plutonium in aqueous solutions by UV/Vis spectroscopy, CE-ICP-MS and CE-RIMS. Radiochim. Acta 95(8), 433 (2007).10.1524/ract.2007.95.8.433Suche in Google Scholar
4. Hou, X., Roos, P.: Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal. Chim. Acta 608(2), 105 (2008).10.1016/j.aca.2007.12.012Suche in Google Scholar PubMed
5. Steier, P., Bichler, M., Fifield, L. K., Golser, R., Kutschera, W., Priller, A., Quinto, F., Richter, S., Srncik, M., Terrasi, P., Wacker, L., Wallner, A., Wallner, G., Wilcken, K. M., Wild, E. M.: Natural and anthropogenic 236U in environmental samples. Nucl. Instrum. Methods Phys. Res. Sect. B 266(10), 2246 (2008).10.1016/j.nimb.2008.03.002Suche in Google Scholar
6. Bürger, S., Riciputi, L. R., Bostick, D. A., Turgeon, S., McBay, E. H., Lavelle, M.: Isotope ratio analysis of actinides, fission products, and geolocators by high-efficiency multi-collector thermal ionization mass spectrometry. Int. J. Mass Spectrom. 286(2–3), 70 (2009).10.1016/j.ijms.2009.06.010Suche in Google Scholar
7. Becker, J. S.: Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. Int. J. Mass Spectrom. 242(2–3), 183 (2005).10.1016/j.ijms.2004.11.009Suche in Google Scholar
8. Hurst, G. S., Payne, M. G.: Principles and applications of resonance ionisation spectroscopy. A. Hilger, CRC Press, Boca Raton, FL, USA (1988).Suche in Google Scholar
9. Müller, P., Bushaw, B. A., Blaum, K., Diel, S., Geppert, C., Nähler, A., Trautmann, N., Nörtershäuser, W., Wendt, K.: Ca-41 ultratrace determination with isotopic selectivity >1012 by diode-laser-based RIMS. Fresenius J. Anal. Chem. 370(5), 508 (2001).10.1007/s002160100815Suche in Google Scholar PubMed
10. Lu, Z. T., Wendt, K. D. A.: Laser-based methods for ultrasensitive trace-isotope analyses. Rev. Sci. Instrum. 74(3), 1169 (2003).10.1063/1.1535232Suche in Google Scholar
11. Raeder, S., Fies, S., Tomita, H., Wendt, K. D. A.: Selective isotope determination of uranium using HR-RIMS. In: AIP Conference Proceedings, vol. 1104, p. 96 (2009).10.1063/1.3115615Suche in Google Scholar
12. Grüning, C., Huber, G., Klopp, P., Kratz, J. V., Kunz, P., Passler, G., Trautmann, N., Waldek, A., Wendt, K.: Resonance ionization mass spectrometry for ultratrace analysis of plutonium with a new solid state laser system. Int. J. Mass Spectrom. 235(2), 171 (2004).10.1016/j.ijms.2004.04.013Suche in Google Scholar
13. Wendt, K., Trautmann, N.: Recent developments in isotope ratio measurements by resonance ionization mass spectrometry. Int. J. Mass Spectrom. 242(2–3), 161 (2005).10.1016/j.ijms.2004.11.008Suche in Google Scholar
14. Wendt, K., Geppert, C., Mattolat, C., Passler, G., Raeder, S., Schwellnus, F., Wies, K., Trautmann, N.: Progress of ultra trace determination of technetium using laser resonance ionization mass spectrometry. Anal. Bioanal. Chem. 404(8), 2173 (2012).10.1007/s00216-012-6309-8Suche in Google Scholar PubMed
15. Trautmann, N.: Ultratrace analysis of technetium. Radiochim. Acta 63(S1), 37 (1993).10.1524/ract.1993.63.special-issue.37Suche in Google Scholar
16. Schönberg, P., Mokry, C., Runke, J., Schönenbach, D., Stöbener, N., Thörle-Pospiech, P., Trautmann, N., Reich, T.: Application of resonance ionization mass spectrometry for ultratrace analysis of technetium. Anal. Chem. 89(17), 9077 (2017).10.1021/acs.analchem.7b01778Suche in Google Scholar PubMed
17. Maul, J., Strachnov, I., Eberhardt, K., Karpuk, S., Passler, G., Trautmann, N., Wendt, K., Huber, G.: Spatially resolved ultra-trace analysis of elements combining resonance ionization with a MALDI-TOF spectrometer. Anal. Bioanal. Chem. 386(1), 109 (2006).10.1007/s00216-006-0584-1Suche in Google Scholar PubMed
18. Isselhardt, B. H., Savina, M. R., Knight, K. B., Pellin, M. J., Hutcheon, I. D., Prussin, S. G.: Improving precision in resonance ionization mass spectrometry: influence of laser bandwidth in uranium isotope ratio measurements. Anal. Chem. 83(7), 2469 (2011).10.1021/ac102586vSuche in Google Scholar PubMed
19. Levine, J., Savina, M. R., Stephan, T., Dauphas, N., Davis, A. M., Knight, K. B., Pellin, M. J.: Resonance ionization mass spectrometry for precise measurements of isotope ratios. Int. J. Mass Spectrom. 288(1–3), 36 (2009).10.1016/j.ijms.2009.07.013Suche in Google Scholar
20. Franzmann, M., Bosco, H., Hamann, L., Walther, C., Wendt, K.: Resonant laser–SNMS for spatially resolved and element selective ultra-trace analysis of radionuclides. J. Anal. At. Spectrom. 33(5), 730 (2018).10.1039/C7JA00423KSuche in Google Scholar
21. Köster, U., Fedoseyev, V. N., Mishin, V. I.: Resonant laser ionization of radioactive atoms. Spectrochim. Acta B 58(6), 1047 (2003).10.1016/S0584-8547(03)00075-2Suche in Google Scholar
22. Marsh, B. A.: Resonance ionization laser ion sources for on-line isotope separators (invited). Rev. Sci. Instrum. 85(2), 02B923 (2014).10.1063/1.4858015Suche in Google Scholar PubMed
23. Raeder, S., Hakimi, A., Stöbener, N., Trautmann, N., Wendt, K.: Detection of plutonium isotopes at lowest quantities using in-source resonance ionization mass spectrometry. Anal. Bioanal. Chem. 404(8), 2163 (2012).10.1007/s00216-012-6238-6Suche in Google Scholar PubMed
24. Raeder, S., Sonnenschein, V., Gottwald, T., Moore, I. D., Reponen, M., Rothe, S., Trautmann, N., Wendt, K.: Resonance ionization spectroscopy of thorium isotopes – towards a laser spectroscopic identification of the low lying 7.6 eV isomer of 229Th. J. Phys. B 44(16), 165005 (2011).10.1088/0953-4075/44/16/165005Suche in Google Scholar
25. Naubereit, P., Marn-Sáez, J., Schneider, F., Hakimi, A., Franzmann, M., Kron, T., Richter, S., Wendt, K.: Resonance ionization spectroscopy of sodium Rydberg levels using difference frequency generation of high-repetition-rate pulsed Ti:sapphire lasers. Phys. Rev. A 93(5), 052518 (2016).10.1103/PhysRevA.93.052518Suche in Google Scholar
26. Geppert, C.: Laser systems for on-line laser ion sources. Nucl. Instrum. Methods Phys. Res. Sect. B 266(19), 4354 (2008).10.1016/j.nimb.2008.05.036Suche in Google Scholar
27. Mattolat, C., Rothe, S., Schwellnus, F., Gottwald, T., Raeder, S., Wendt, K.: An all-solid-state high repetition rate titanium:sapphire laser system for resonance ionization laser ion sources. In: AIP Conference Proceedings, vol. 1104, p. 114 (2009).10.1063/1.3115586Suche in Google Scholar
28. Raeder, S., Stöbener, N., Gottwald, T., Passler, G., Reich, T., Trautmann, N., Wendt, K.: Determination of a three-step excitation and ionization scheme for resonance ionization and ultratrace analysis of Np-237. Spectrochim. Acta Part B 66(3–4), 242 (2011).10.1016/j.sab.2011.02.002Suche in Google Scholar
29. Raeder, S., Fies, S., Gottwald, T., Mattolat, C., Rothe, S., Wendt, K.: In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium. Hyperfine Interact. 196, 71 (2010).10.1007/s10751-010-0160-0Suche in Google Scholar
30. Blaise, J., Wyart, J. F.: Energy levels and atomic spectra of actinides. Tables Selected Constants 20(8), 412 (1992).Suche in Google Scholar
31. Liu, Y., Batchelder, J. C., Galindo-Uribarri, A., Chu, R., Fan, S., Romero-Romero, E., Stracener, D. W.: Ion source development for ultratrace detection of uranium and thorium. Nucl. Instrum. Methods Phys. Res. B 361, 267 (2015).10.1016/j.nimb.2015.04.081Suche in Google Scholar
32. Gadelshin, V., Cocolios, T., Fedoseev, V., Heinke, R., Kieck, T., Marsh, B., Naubereit, P., Rothe, S., Stora, T., Studer, D., van Duppen, P., Wendt, K.: Laser resonance ionization spectroscopy on lutetium for the MEDICIS project. Hyperfine Interact. 238(1), 28 (2017).10.1007/s10751-017-1406-xSuche in Google Scholar
33. Raeder, S., Dombsky, M., Heggen, H., Lassen, J., Quenzel, T., Sjödin, M., Teigelhöfer, A., Wendt, K.: In-source laser spectroscopy developments at TRILIS – towards spectroscopy on actinium and scandium. Hyperfine Interact. 216(1–3), 33 (2013).10.1007/s10751-013-0832-7Suche in Google Scholar
34. Backe, H., Hies, M., Kunz, H., Lauth, W., Curtze, O., Schwamb, P., Sewtz, M., Theobald, W., Zahn, R., Eberhardt, K., Trautmann, N., Habs, D., Repnow, R., Fricke, B.: Isotope shift measurements for superdeformed fission isomeric states. Phys. Rev. Lett. 80, 920 (1998).10.1103/PhysRevLett.80.920Suche in Google Scholar
35. Campbell, P., Moore, I. D., Pearson, M. R.: Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016).10.1016/j.ppnp.2015.09.003Suche in Google Scholar
36. Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., Wendt, K.: Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta B 52(6), 717 (1997).10.1016/S0584-8547(96)01670-9Suche in Google Scholar
37. Bushaw, B. A., Nörtershäuser, W., Wendt, K.: Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry. Spectrochim. Acta B 54(2), 321 (1999).10.1016/S0584-8547(98)00250-XSuche in Google Scholar
38. Sonnenschein, V., Moore, I. D., Khan, H., Pohjalainen, I., Reponen, M.: Characterization of a dual-etalon Ti:sapphire laser via resonance ionization spectroscopy of stable copper isotopes. Hyperfine Interact. 227(1–3), 113 (2014).10.1007/s10751-013-1000-9Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium
Artikel in diesem Heft
- Frontmatter
- Preface
- Günter Herrmann (1925–2017): A tribute to his research and organizational achievements
- The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education
- Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes
- Reactions of fission products from a 252Cf source with NO and mixtures of NO and CO in an inert gas
- From SRAFAP to ARCA and AIDA – developments and implementation of automated aqueous-phase rapid chemistry apparatuses for heavy actinides and transactinides
- Production and study of chemical properties of superheavy elements
- Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure
- Modeling the sorption of Np(V) on Na-montmorillonite – effects of pH, ionic strength and CO2
- Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique
- Nuclear forensics on uranium fuel pellets
- Recent developments in resonance ionization mass spectrometry for ultra-trace analysis of actinide elements
- Measurement of the laser resonance ionization efficiency for lutetium