Startseite Effect of solution acidity on the structure of amino acid-bearing uranyl compounds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of solution acidity on the structure of amino acid-bearing uranyl compounds

  • Evgeny V. Nazarchuk , Yuri A. Ikhalaynen , Dmitri O. Charkin EMAIL logo , Oleg I. Siidra , Vladimir G. Petrov , Stepan N. Kalmykov und Artem S. Borisov
Veröffentlicht/Copyright: 5. Januar 2019

Abstract

A series of uranyl sulfates and selenates templated by protonated forms of amino acids (glycine, α- and β-alanine, threonine, nicotinic, and isonicotinic acid) has been prepared via isothermal evaporation of strongly acidic solutions. Their structures have been refined by the direct methods and can be classified as inorganic [(UO2)m(TO4)n (H2O)k] (T=S6+, Se6+) moieties combined with the protonated amino acid cations, water molecules and hydronium ions. Their overall motifs demonstrate common features with related structures templated by organic amines. The role of carboxylic acid groups depends on the nature of the corresponding amino acid. They can either link two protonated organic moieties into dimers, or contribute to hydrogen bonding between organic and inorganic parts of the structure. The ammonium ends of the amino acid cations form strong directional bonds to the oxygens of the uranyl and TO4 anions.

Acknowledgements

This work was financially supported by the Russian Science Foundation through the grant 16-17-10085. Technical support by the SPbSU X-ray Diffraction and Microscopy and Microanalysis Resource Centers is gratefully acknowledged.

References

1. Hazen, R. M., Ewing, R. C., Sverjensky, D. A.: Evolution of uranium and thorium minerals. Am. Mineral. 94, 1293 (2009).10.2138/am.2009.3208Suche in Google Scholar

2. Suzuki, Y., Kelly, S. D., Kemner, K. M., Banfield, J. F.: Nanometre-size products of uranium bioreduction. Nature 419, 134 (2002).10.1038/419134aSuche in Google Scholar PubMed

3. Van Horn, J. D., Huang, H.: Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord. Chem. Rev. 250, 765 (2006).10.1016/j.ccr.2005.09.010Suche in Google Scholar

4. Vazquez, G. J., Dodge, C. J., Francis, A. J.: Bioreduction of U(VI)–phthalate to a polymeric U(IV)–phthalate colloid. Inorg. Chem. 48, 9485 (2009).10.1021/ic900694kSuche in Google Scholar PubMed

5. Falaise, C., Neal, H. F., Nyman, M.: U(IV) aqueous speciation from the monomer to UO2 nanoparticles: two levels of control from zwitterionic glycine ligands. Inorg. Chem. 56, 6591 (2017).10.1021/acs.inorgchem.7b00616Suche in Google Scholar PubMed

6. O’Loughlin, E. J., Kelly, S. D., Cook, R. E., Csencsits, R., Kemner, K. M.: Reduction of uranium (VI) by mixed Fe(II)/Fe(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ. Sci. Technol. 37, 721 (2003).10.1021/es0208409Suche in Google Scholar PubMed

7. Scott, T. B., Allen, G. C., Heard, P. J., Randell, M. G.: Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim. Cosmochim. Acta 69, 5639 (2005).10.1016/j.gca.2005.07.003Suche in Google Scholar

8. Knope, K. E., Soderholm, L.: Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem. Rev. 113, 944 (2013).10.1021/cr300212fSuche in Google Scholar PubMed

9. Natrajan, L. S., Swinburne, A. N., Andrews, M. B., Randall, S., Heath, S. L.: Redox and environmentally relevant aspects of actinide(IV) coordination chemistry. Coord. Chem. Rev. 266–267, 171 (2014).10.1016/j.ccr.2013.12.021Suche in Google Scholar

10. Zanker, H., Hennig, C.: Colloid-borne forms of tetravalent actinides: a brief review. Contam. Hydrol. 157, 87 (2014).10.1016/j.jconhyd.2013.11.004Suche in Google Scholar PubMed

11. Takao, S., Takao, K., Kraus, W., Emmerling, F., Scheinost, A. C., Bernhard, G., Hennig, C.: First hexanuclearUIV and ThIV formate complexes – structure and stability range in aqueous solution. Eur. J. Inorg. Chem. 32, 4771 (2009).10.1002/ejic.200900899Suche in Google Scholar

12. Martin, N. P., März, J., Volkringer, C., Henry, N., Hennig, C., Ikeda-Ohno, A., Loiseau, T.: Synthesis of coordination polymers of tetravalent actinides (uranium and neptunium) with a phthalate or mellitate ligand in an aqueous medium. Inorg. Chem. 56, 2902 (2017).10.1021/acs.inorgchem.6b02962Suche in Google Scholar PubMed

13. Tamain, C., Dumas, T., Hennig, C., Guilbaud, P.: Coordination of tetravalent actinides (An=ThIV, UIV, NpIV, PuIV) with DOTA: from dimers to hexamers. Chem. Eur. J. 59, 2202 (2017).10.1002/chem.201700493Suche in Google Scholar PubMed

14. Jordi, B., Ewing, R. C.: Spent nuclear fuel. Elements 2, 343 (2006).10.2113/gselements.2.6.343Suche in Google Scholar

15. Krivovichev, S. V., Burns, P. C., Tananaev, I. G. (Editors). Structural chemistry of inorganic actinide compounds. Elsevier, Amsterdam (2007), p. 1.10.1016/B978-044452111-8/50002-8Suche in Google Scholar

16. Kirishima, A., Kimura, T., Tochiyama, O., Yoshida, Z. J.: Luminescence studies of tetravalent uranium in aqueous solution. J. Alloys Compd. 374, 277 (2004).10.1039/b300583fSuche in Google Scholar PubMed

17. Rowland, C. E., Cahill, C. L.: Capturing hydrolysis products in the solid state: effects of pH on uranyl squarates under ambient conditions. Inorg. Chem. 49, 8668 (2010).10.1021/ic1000792Suche in Google Scholar PubMed

18. Mihalcea, I., Henry, N., Volkringer, C., Loiseau, T.: Uranyl–pyromellitate coordination polymers: toward three-dimensional open frameworks with large channel systems. Cryst. Growth Des. 12, 526 (2012).10.1021/cg201509vSuche in Google Scholar

19. Wronkiewicz, D. J., Buck, E. C.: Uranium mineralogy and the disposal of spent nuclear fuel. In: Burns, P. C., Finch, R. (Eds.), Uranium: Mineralogy. Geochemistry and the Environment. Mineralogical Society of America. Reviews in Mineralogy 38, 475 (1999).10.1515/9781501509193-015Suche in Google Scholar

20. Gunther, A., Geipel, G., Bernhard, G.: Spectroscopic investigations of U(VI) species sorbed by the green algae Chlorella vulgaris. Polyhedron 26, 59 (2007).10.1007/s10534-007-9122-7Suche in Google Scholar PubMed

21. Osman, A. A. A., Geipel, G., Bernhard, G.: Interaction of uranium(VI) with bioligands present in human biological fluids: the case study of urea and uric acid. Radiochim. Acta 101, 139 (2013).10.1524/ract.2013.2010Suche in Google Scholar

22. Van Horn, J. D., Huang, H.: Uranium (VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord. Chem. Rev. 250, 765 (2006).10.1016/j.ccr.2005.09.010Suche in Google Scholar

23. Alcock, N. W., Flanders, D. J., Kemp, T. J., Shand, M. A.: Glycine complexation with uranyl ion: absorptiometric, luminescence, and X-ray structural studies of tetrakis (glycine) dioxouranium (VI) nitrate. Dalton Trans. 34, 517 (1985).10.1039/dt9850000517Suche in Google Scholar

24. Bismondo, A., Casellato, U., Sitran, S.: Preparation and characterization of some uranyl complexes of amino acids. The crystal structure of [UO2(γ-aminobutanoic acid)3](NO3)2. Inorg. Chim. Acta 110, 205 (1985).10.1016/S0020-1693(00)82308-7Suche in Google Scholar

25. Knope, K. E., Cahill, C. L.: Uranyl triazolate formation via an in situ Huisgen 1,3-dipolar cycloaddition reaction. Cryst. Eng. Comm. 13, 153 (2011).10.1039/C0CE00231CSuche in Google Scholar

26. Thuery, P.: Uranyl-organic assemblies with acetate-bearing phenyl- and cyclohexyl-based ligands. Cryst. Growth Des. 11, 347 (2011).10.1021/cg101344tSuche in Google Scholar

27. Knope, K. E., Cahill, C. L.: Homometallic UO22+ diphosphonates assembled under ambient and hydrothermal conditions. Dalton Trans. 39, 8319 (2010).10.1039/c0dt00538jSuche in Google Scholar PubMed

28. Deifel, N. P., Cahill, C. L.: PF6 hydrolysis as a route to unique uranium phosphate materials. Compd. Rend. Chim. 13, 747 (2010).10.1039/b813819bSuche in Google Scholar PubMed

29. Liao, Z. L., Li, G. D., Wei, X., Yang, Y., Jie-Sheng, C.: Construction of three-dimensional uranyl–organic frameworks with benzenetricarboxylate ligands. Eur. J. Inorg. Chem. 24, 3780 (2010).10.1002/ejic.201000298Suche in Google Scholar

30. Ramaswamy, P., Prabhu, R., Natarajan, S.: Synthesis, structure, and solid-state transformation studies of phosphonoacetate based hybrid compounds of uranium and thorium. Inorg. Chem. 49, 7927 (2010).10.1021/ic101043zSuche in Google Scholar PubMed

31. Andrews, M. B., Cahill, C. L.: Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem. Rev. 113, 1121 (2013).10.1021/cr300202aSuche in Google Scholar PubMed

32. Groot, J., Gojdas, K., Unruh, D. K., Forbes, T. Z.: Use of charge-assisted hydrogen bonding in the supramolecular assembly of hybrid uranyl materials. Cryst. Growth Des. 14, 1357 (2014).10.1021/cg401849rSuche in Google Scholar

33. Li, P., Vermeulen, N. A., Malliakas, C. D., Gómez-Gualdrón, D. A., Howarth, A. J., Layla Mehdi, B., Donhalkova, A., Browning, N. D., O’Keeffe, M., Fahra, O. K.: Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 356, 624 (2017).10.1126/science.aam7851Suche in Google Scholar

34. Chaudhuri, M. K., Srinivas, P.: Synthesis and spectroscopic characterization of mixed-fluoro complexes of UO22+ containing amino acids, acetylacetonate or acetate as the co-ligands and the first report on the heptafluoroxioxouranate(VI) complex [UO2F7]5−. Polyhedron 12, 227 (1993).10.1016/S0277-5387(00)81631-9Suche in Google Scholar

35. Ramanujam, V. V., Rengaraj, K., Sivasankar, B.: Studies on uranyl complexes. ii. Unidentate carboxylate coordination in uranyl complexes of α-, β-, and γ-amino acids: apolarographicstudy. Bull. Chem. Soc. Jpn. 79, 2713 (1979).10.1246/bcsj.52.2713Suche in Google Scholar

36. Bismondo, A., Casellato, U., Forsellini, E., Graziani, R.: Preparation and crystal structure of tris(γ-aminobutanoic acid) dioxouranium(VI) diperchlorate. J. Crystallogr. Spectrosc. Res. 257, 257 (1985).10.1007/BF01160485Suche in Google Scholar

37. Szabó, Z., Toraishi, T., Vallet, V., Grenthe, I.: Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms. Coord. Chem. Rev. 250, 784 (2006).10.1016/j.ccr.2005.10.005Suche in Google Scholar

38. Lagrange, P., Schneider, M., Zare, K., Lagrange, E.: Determination and comparison of stability constants of uranium(VI) and vanadium(V) glycine complexes. Polyhedron 13, 861 (1994).10.1016/S0277-5387(00)83001-6Suche in Google Scholar

39. Cerfola, M.,Taylor, R. C., Gentile, P. S., Celiano, A. V.: Coordination of the SIT model allowed us to calculate the formation compounds. J. Phys. Chem. 66, 790 (1962).10.1021/j100811a004Suche in Google Scholar

40. Szabó, Z., Grenthe, I.: Potentiometric and multinuclear NMR study of the binary and ternary uranium(VI)–L–fluoride systems, where L is α-hydroxycarboxylate or glycine. Inorg. Chem. 39, 5036 (2000).10.1021/ic000400nSuche in Google Scholar PubMed

41. Grechishnikova, E. V., Mikhailov, Yu. N., Kanishcheva, A. S., Serezhkina, L. B., Serezhkin, V. N.: Synthesis and structure of [UO2(OH)(C6NO2H4)(C6NO2H5)]. Russ. J. Inorg. Chem. 50, 1332 (2005).Suche in Google Scholar

42. Hennig, C., Takao, S., Takao, K., Weiss, S., Kraus, W., Emmerling, F., Scheinost, A. C.: Structure and stability range of a hexanuclearTh(IV)-glycine complex. Dalton Trans. 41, 12818 (2012).10.1039/c2dt31367gSuche in Google Scholar PubMed

43. Takao, K., Takao, S., Scheinost, A. C.: Formation of soluble hexanuclear neptunium(IV) nanoclusters in aqueous solution: growth termination of actinide(IV) hydrous oxides by carboxylates. Inorg. Chem. 51, 1336 (2012).10.1021/ic201482nSuche in Google Scholar PubMed

44. Knope, K. E., Soderholm, L.: Plutonium(IV) cluster with a hexanuclear [Pu6(OH)4O4]12+ core. Inorg. Chem. 52, 6770 (2013).10.1021/ic4007185Suche in Google Scholar PubMed

45. Su, J., Zhang, K., Eugen Schwarz, W. H., Li, J.: Uranyl-glycine-water complexes in solution: Comprehensive computational modeling of coordination geometries, stabilization energies, and luminescence properties. Inorg. Chem. 50, 2082 (2011).10.1021/ic200204pSuche in Google Scholar PubMed

46. Grunder, S., Valente, C., Whalley, A. C., Sampath, S., Portmann, J., Botros, Y. Y., Stoddart, J. F.: Molecular gauge blocks for building on the nanoscale. Chem. Eur. J. 18, 15632 (2012).10.1002/chem.201201985Suche in Google Scholar PubMed

47. Kao, J., Bai, P., Lucas, J. M.: Size-dependent assemblies of nanoparticle mixtures in thin films. J. Am. Chem. Soc. 135, 1680 (2013).10.1021/ja3107912Suche in Google Scholar PubMed

48. Sun, Y. L., Zhou, Y., Li, Q. L., Yang, Y. W.: Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release. Chem. Commun. 49, 9033 (2013).10.1039/c3cc45216fSuche in Google Scholar PubMed

49. Dai, F. N., He, H. Y., Sun, D. F.: A metal–organic nanotube exhibiting reversible adsorption of (H2O)12 cluster. J. Am. Chem. Soc. 130, 14064 (2008).10.1021/ja805920tSuche in Google Scholar PubMed

50. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Chukanov, N. V., Depmeier, W., Bocharov, S. N., Sharikov, M. I.: Uranyl sulfate nanotubulestemplated by N-phenylglycine. Nanomaterials 8, 216 (2018).10.3390/nano8040216Suche in Google Scholar PubMed PubMed Central

51. Siidra, O. I., Nazarchuk, E. V., Charkin, D. O., Chukanov, N. V., Zakharov, A. Yu., Kalmykov, S. N., Ikhalainen, Yu. A.: Open-framework sodium uranyl selenate and sodium uranyl sulfate with protonated morpholino-N-acetic acid. Z. Kristallogr.-Cryst. Mater. DOI: 10.1515/zkri-2018–2103.10.1515/zkri-2018–2103Suche in Google Scholar

52. Kierkegaard, P.: The crystal structure of U(SO4)2(H2O)4. Acta Chem. Scand. 10, 599 (1956).10.3891/acta.chem.scand.10-0599Suche in Google Scholar

53. Szabó, Z., Aas, W., Grenthe, I.: Structure, isomerism, and ligand dynamics in dioxouranium(VI) complexes. Inorg. Chem.36, 5369 (1997).10.1021/ic9708172Suche in Google Scholar

54. Bruker-AXS, APEX2. Version 2014.11-0. Madison, Wisconsin, USA (2014).Suche in Google Scholar

55. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. A 71, 3 (2015).10.1107/S2053273314026370Suche in Google Scholar

56. Verevkin, A. G., Vologzhanina, A. V., Serezhkina, L. B., Serezhkin, V. N.: X-ray diffraction study of Rb2[(UO2)2(CrO4)3(H2O)2]4H2O. Crystallogr. Rep. 55, 602 (2010).10.1134/S1063774510040115Suche in Google Scholar

57. Krivovichev, S. V., Burns, P. C.: Crystal chemistry of potassium uranyl chromates: crystal structures of K8[(UO2)2(CrO4)4](NO3)2, K5[(UO2)(CrO4)3](NO3)(H2O)3, K4[(UO2)3(CrO4)5](H2O)8 and K2[(UO2)2 (CrO4)3(H2O)2](H2O)4. Z. Kristallogr. 218, 725 (2003).10.1524/zkri.218.11.725.20298Suche in Google Scholar

58. Danis, J. A., Hawkins, H. T., Scott, B. L., Runde, W. H., Scheetz, B. E., Eichhorn, B. W.: X-ray structure determination of two related uranyl phosphate crown ether compounds. Polyhedron 19, 1551 (2000).10.1016/S0277-5387(00)00408-3Suche in Google Scholar

59. Doran, M. B., Norquist, A. J., O’Hare, D.: Exploration of composition space in templated uranium sulfates. Inorg. Chem. 42, 6989 (2003).10.1021/ic034540jSuche in Google Scholar PubMed

60. Norquist, A. J., Doran, M. B., O’Hare, D.: The effects of linear diamine chain length in uranium sulfate. Solid State Sci. 5, 1149 (2003).10.1016/S1293-2558(03)00133-XSuche in Google Scholar

61. Doran, M. B., Cockbain, B. E., Norquist, A. J., O’Hare, D.: The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates. Dalton Trans. 22, 3810 (2004).10.1039/b413062fSuche in Google Scholar PubMed

62. Mikhailov, Yu. N., Gorbunova, Yu. E., Demchenko, E. A., Serezhkina, L. B., Serezhkin, V. N.: Crystal structure of [C2H4(NH3)2][UO2(SO4)2·H2O]. Russ. J. Inorg. Chem. 45, 1571 (2000).Suche in Google Scholar

63. Thomas, P. M., Norquist, A. J., Doran, M. B., O’Hare, D.: Organically templated uranium (VI) sulfates: understanding phase stability using composition space. J. Mater. Chem. 13, 88 (2003).10.1039/b206694gSuche in Google Scholar

64. Norquist, A. J., Doran, M. B., O’Hare, D.: The role of amine sulfates in hydrothermal uranium chemistry. Inorg. Chem. 44, 3837 (2005).10.1021/ic0484452Suche in Google Scholar PubMed

65. Krivovichev, S. V., Kahlenberg, V.: Low-dimensional structural units in amine-templated uranyl oxoselenates (VI): synthesis and crystal structures of [C3H12N2][(UO2)(SeO4)2(H2O)2](H2O), [C5H16N2]2[(UO2)(SeO4)2(H2O)](NO3)2, [C4H12N][(UO2)(SeO4)(NO3)] and [C4H14N2][(UO2)(SeO4)2(H2O)]. Z. Anorg. Allg. Chem. 631, 2352 (2005).10.1002/zaac.200400505Suche in Google Scholar

66. Gurzhiy,V. V., Kovrugin, V. M., Tyumentseva, O. S., Mikhaylenko, P. A., Krivovichev, S. V., Tananaev, I. G.: Topologically and geometrically flexible structural units in seven new organically templated uranyl selenates and selenite-selenates. J. SolidState Chem. 229, 32 (2015).10.1016/j.jssc.2015.04.040Suche in Google Scholar

67. Norquist, A. J., Thomas, P. M., Doran, M. B., O’Hare, D.: Synthesis ofcyclicaldiaminetemplateduraniumsulfates. Chem. Mater. 14, 5179 (2002).10.1021/cm020793jSuche in Google Scholar

68. Ling, J., Sigmon, G. E., Ward, M., Roback, N., Burns, P. C.: Syntheses, structures, and IR spectroscopiccharacterizationofnewuranylsulfate/selenate 1D-chain, 2D-sheet and 3D-framework. Z. Kristallogr. 225, 230 (2010).10.1524/zkri.2010.1228Suche in Google Scholar

69. Doran, M. B., Norquist, A. J., O’Hare, D.: Catena-poly[cyclohexane-1,4-diammonium [[dioxo-(sulfato-κ2O,O′)-uranium(VI)]-μ-sulfato] dihydrate]. Acta Crystallogr. E59, m765 (2003).10.1107/S1600536803015836Suche in Google Scholar

70. Guo, H.-X., Weng, W., Li, X.-Z.: Hydrothermal synthesis, crystalstructureandluminescentpropertiesof an organicallytemplated 2-D uranyl Sulfate. Chin. J. Struct. Chem. 27, 1455 (2008).Suche in Google Scholar

71. Serezhkin, V. N., Soldatkina, M. A.: Crystal structureofthe NH4[UO2SO4F]. Koord. Khim. (Russ.) 11, 103 (1985).Suche in Google Scholar

72. Medrish, I. V., Vologzhanina, A. V., Starikova, Z. A., Antipin, M. Yu., Serezhkina, L. B., Serezhkin, V. N.: Synthesis andcrystalstructureoftheaminoguanidiniumsulfatouranylate. Russ. J. Inorg. Chem. 50, 360 (2005).Suche in Google Scholar

73. Krivovichev, S. V., Tananaev, I. G., Myasoedov, B. F.: Charge-density matching in organic-inorganic uranyl compounds. Comp. Rend. Chim. 10, 897 (2007).10.1016/j.crci.2007.05.003Suche in Google Scholar

74. Ling, J., Sigmon, G. E., Burns, P. C.: Syntheses, structures, characterizations and charge-density matching of novel amino-templated uranyl selenates. J. Solid State Chem. 182, 402 (2009).10.1016/j.jssc.2008.11.013Suche in Google Scholar

75. Krivovichev, S. V., Kahlenberg, V., Tananaev, I. G., Myasoedov, B. F.: Amine-templated uranyl selenates withlayered structures. I. Structural diversity of sheets with a U:Se ratio of 1:2. Z. Anorg. Allg. Chem. 631, 2358 (2005).10.1002/zaac.200500198Suche in Google Scholar

76. Doran, M. B., Norquist, A. J., Stuart, C. L., O’Hare, D.: (C8H26N4)0.5 [(UO2)2(SO4)3(H2O)]·2H2O, an organically templated uranyl sulfate with a novel layer type. Acta Cryst. E60, m996 (2004).10.1107/S1600536804014941Suche in Google Scholar

77. Bharara, M. S., Gorden, A. E. V.: Amine templated two- and three-dimensional uranyl sulfates. Dalton Trans. 39, 3557 (2010).10.1039/b926973hSuche in Google Scholar PubMed

78. Siidra, O. I., Nazarchuk, E. V., Krivovichev, S. V.: Isopropylammonium layered uranyl chromates: syntheses and crystal structures of [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] and [(CH3)2CHNH3]2[(UO2)2 (CrO4)3(H2O)]. Z. Anorg. Allg. Chem. 368, 976 (2012).10.1002/zaac.201100558Suche in Google Scholar

79. Siidra, O. I., Nazarchuk, E. V., Bocharov, S., Depmeier, W., Zadoya, A.: Formation of co-racemic uranyl chromate constructed from chiral layers of different topology. Acta Cryst. B73, 101 (2017).10.1107/S205252061601917XSuche in Google Scholar

80. Brammer, L.: Hydrogen bonds in inorganic chemistry: application to crystal design. In: G. R. Desiraju (Ed.), Crystal Design: Structure and Function, Volume 7, John Wiley & Sons, Ltd. (2017), p. 1.10.1002/0470868015.ch1Suche in Google Scholar

81. Hennig, C., Kraus, W., Emmerling, F., Ikeda, A., Scheinost, A. C.: Coordination of a uranium(IV) Sulfate monomer in an aqueous solution and in the solid state. Inorg. Chem. 47, 1634 (2008).10.1021/ic701880hSuche in Google Scholar PubMed

82. Krivovichev, S. V., Gurzhiy, V. V., Tananaev, I. G., Myasoedov, B. F.: Amine-templated uranyl selenates with chiral [(UO2)2(SeO4)3(H2O)]2− layers: topology, isomerism, structural control. Z. Kristallogr. 224, 316 (2009).10.1524/zkri.2009.1145Suche in Google Scholar

83. Krivovichev, S. V.: Compare flexibility of structural complexes in uranyl sulphates, chromates and molybdates. Radiochemistry 46, 434 (2004).10.1007/s11137-005-0004-ySuche in Google Scholar

84. Siidra, O. I., Nazarchuk, E. V., Petrunin, A. A., Kayukov, R. A., Krivovichev, S. V.: Nanoscale hemispheres in novel mixed-valent uranyl chromate (V,VI), (C3NH10)10[(UO2)13(Cr125+O42)(Cr6+O4)6(H2O)6](H2O)6. Inorg. Chem. 51, 9162 (2012).10.1021/ic301288rSuche in Google Scholar PubMed

85. Hou, X., Tang, S. F.: Construction of uranyl phosphonates from multifunctional zwitterionic ligands. Inorg. Chim. Acta 474, 11 (2018).10.1016/j.ica.2018.01.019Suche in Google Scholar

86. Wang, Y., Yin, X., Liu, W., Xie, J., Chen, J., Silver, M. A., Sheng, D., Chen, L., Diwu, J., Liu, N., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators. Angew. Chem. Int. Ed. 57, 7883 (2018).10.1002/anie.201802865Suche in Google Scholar PubMed

87. Xie, J., Wang, Y., Liu, W., Yin, X., Chen, L., Zou, Y., Juan, D., Chai, Z., Albrecht-Schmitt, T. E., Liu, G., Wang, S.: Highly sensitive detection of ionizing radiations by a photoluminescenturanyl organic framework. Angew. Chem. Int. Ed. 56, 7500 (2017).10.1002/anie.201700919Suche in Google Scholar PubMed

88. Wang, Y., Liu, Z., Li, Y., Bai, Z., Liu, W., Wang, Y., Xu, X., Xiao, C., Sheng, D., Diwu, J., Su, J., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenatedframework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 137, 6144 (2015).10.1021/jacs.5b02480Suche in Google Scholar PubMed

89. Wang, X., Wang, Y., Dai, X., Silver, M. A., Liu, W., Li, Y., Bai, Z., Gui, D., Chen, L., Diwu, J., Zhou, R., Chai, Z., Wang, S.: Phase transition triggered aggregation-induced emission in a photoluminescent uranyl–organic framework. Chem. Commun. 54, 627 (2018).10.1039/C7CC09594ESuche in Google Scholar

90. Liu, W., Dai, X., Xie, J., Silver, M. A., Zhang, D., Wang, Y., Cai, Y., Diwu, J., Wang, J., Zhou, R., Chai, Z., Wang, S.: Highly sensitive detection of UV radiation using a uranium coordination polymer. ACS Appl. Mater. Inter. 10, 4844 (2018).10.1021/acsami.7b17954Suche in Google Scholar PubMed

91. Li, Y., Yang, Z., Wang, Y., Bai, Z., Zheng, T., Dai, X., Liu, S., Gui, D., Liu, W., Chen, M., Chen, L., Diwu, J., Zhu, L., Zhou, R., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 8, 1354 (2017).10.1038/s41467-017-01208-wSuche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3050).


Received: 2018-08-18
Accepted: 2018-11-27
Published Online: 2019-01-05
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3050/html?lang=de
Button zum nach oben scrollen