Startseite Naturwissenschaften Radiation protective characteristics of some selected tungstates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radiation protective characteristics of some selected tungstates

  • Mohammed I. Sayyed , Gandham Lakshminarayana , Mustafa R. Kaçal und Ferdi Akman EMAIL logo
Veröffentlicht/Copyright: 8. Dezember 2018

Abstract

The mass attenuation coefficients (μ/ρ) of calcium tungstate, ammonium tungsten oxide, bismuth tungsten oxide, lithium tungstate, cadmium tungstate, magnesium tungstate, strontium tungsten oxide and sodium dodecatungstophosphate hydrate were measured at 14 photon energies in the energy range of 81–1333 keV using 22Na, 54Mn, 57Co, 60Co, 133Ba and 137Cs radioactive sources. The measured μ/ρ values were compared with those obtained from WinXCOM program and the differences between the experimental and theoretical values were very small. The bismuth tungsten oxide has the highest μ/ρ among the present samples in the studied energy region. From the μ/ρ values, we calculated the half value layer, tenth value layer and mean free path, and the results showed that ammonium tungsten oxide (which has the lowest density) and bismuth tungsten oxide (which has the highest density) possess the highest and lowest values of these three parameters, respectively. Additionally, from the incident and transmitted photon intensities, we calculated the radiation protection efficiency (RPE). The bismuth tungsten oxide was found to have RPE 98.53 % at 81 keV, which has the maximum value among the present samples and this suggested that bismuth tungsten oxide is the best to be chosen as the γ radiation shielding material candidate among the selected samples.

References

1. El-Mallawany, R., Sayyed, M. I.: Comparative shielding properties of some tellurite glasses: part 1. Phys. B: Condens. Matter. 539, 133 (2018).10.1016/j.physb.2017.05.021Suche in Google Scholar

2. Tekin, H. O., Sayyed, M. I., Issa, S. A. M.: Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. 150, 95 (2018).10.1016/j.radphyschem.2018.05.002Suche in Google Scholar

3. Sayyed, M. I., Lakshminarayana, G.: Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. J. Non-Cryst. Solids. 487, 53 (2018).10.1016/j.jnoncrysol.2018.02.014Suche in Google Scholar

4. Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P., Chewpraditkul, W.: Physical,optical,structural and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids. 72(4), 245 (2011).10.1016/j.jpcs.2011.01.007Suche in Google Scholar

5. Mohammadhosseini, H., Tahir, M. M.: Durability performance of concrete incorporating waste metalized plastic fibres and palm oil fuel ash. Constr. Build. Mater. 180, 92 (2018).10.1016/j.conbuildmat.2018.05.282Suche in Google Scholar

6. Chanthima, N., Kaewkhao, J., Limsuwan, P.: Study of photon interactions and shielding properties of silicate glasses containing Bi2O3, BaO and PbO in the energy region of 1 keV to 100 GeV. Ann. Nucl. Energy 41, 119 (2012).10.1016/j.anucene.2011.10.021Suche in Google Scholar

7. Rojas, S. S., Souza, J. E. D., Yukimitu, K., Hernandes, A. C.: Structural, thermal and optical properties of CaBO and CaLiBO glasses doped with Eu3+. J. Non-Cryst. Solids. 398–399, 57 (2014).10.1016/j.jnoncrysol.2014.04.026Suche in Google Scholar

8. Sayyed, M. I.: Investigation of shielding parameters for smart polymers. Chinese J. Phys. 54(3), 408 (2016).10.1016/j.cjph.2016.05.002Suche in Google Scholar

9. Akman, F., Kaçal, M. R., Durak, R.: Chemical effect on the K shell absorption parameters of some selected cerium compounds. J. Instrum. 11, P08006 (2016).10.1088/1748-0221/11/08/P08006Suche in Google Scholar

10. Liu, X., Chen, B. J., Pun, E. Y. B., Lin, H.: Eu3+ and Sm3+ co-activated aluminum germanate glass channel waveguide as irradiation source for photodynamic therapy. J. Lumin. 137, 77 (2013).10.1016/j.jlumin.2012.12.032Suche in Google Scholar

11. Akman, F., Geçibesler, I. H., Sayyed, M. I., Tijani, S. A., Tufekci, A. R., Demirtas, I.: Determination of some useful radiation interaction parameters for waste foods. Nucl. Eng. Technol. 50(6), 944 (2018).10.1016/j.net.2018.05.007Suche in Google Scholar

12. Chen, L., Yuan, W., Nan, S., Du, X., Zhang, D. F., Lv, P., Peng, H. B., Wang, T. S.: Study of modifications in the mechanical properties of sodium aluminoborosilicate glass induced by heavy ions and electrons. Nucl. Instrum. Meth. B. 370, 42 (2016).10.1016/j.nimb.2016.01.007Suche in Google Scholar

13. Kaushik, C. P., Division, W. M., Shah, J. G., Division, B. T. D.: Challenges in development of matrices for vitrification of high-level radioactive waste. BARC News Lett. 314, 20 (2010).Suche in Google Scholar

14. Manohara, S. R., Hanagodimath, S. M., Gerward, L.: Photon interaction and energy absorption in glass: a transparent gamma ray shield. J. Nucl. Mater. 393(3), 465 (2009).10.1016/j.jnucmat.2009.07.001Suche in Google Scholar

15. Mohapatra, M., Kadam, R. M., Mishra, R. K.: Electron beam irradiation effects in Trombay nuclear waste glass. Nucl. Instrum. Meth. B. 269(19), 2057 (2011).10.1016/j.nimb.2011.06.009Suche in Google Scholar

16. Devanathan, R.: Radiation damage evolution in ceramics. Nucl. Instrum. Meth. B 267(18), 3017 (2009).10.1016/j.nimb.2009.06.020Suche in Google Scholar

17. Okada, G., Nakamura, F., Kawano, N., Kawaguchi, N., Kasap, S., Yanagida, T.: Radiation-induced luminescence centres in Sm:MgF2 ceramics. Nucl. Instrum. Meth. B 435, 268 (2018).10.1016/j.nimb.2018.01.032Suche in Google Scholar

18. Zhang, S., Zhang, C., Man, Y., Zhu, Y.: Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties. J. Solid. State. Chem. 179, 62 (2006).10.1016/j.jssc.2005.09.041Suche in Google Scholar

19. Meena, B. S., Heda, N. L., Mund, H. S., Ahuja, B. L.: Compton profiles and electronic structure of monoclinic zinc and cadmium tungstates. Radiat. Phys. Chem. 117, 93 (2015).10.1016/j.radphyschem.2015.08.002Suche in Google Scholar

20. Azimirad, R., Goudarzi, M., Akhavan, O., Moshfegh, A. Z.: The effect of heating time on growth of NaxWO3 nanowhiskers. Vacuum 82, 821 (2008).10.1016/j.vacuum.2007.11.012Suche in Google Scholar

21. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H.: X-ray absorption in matter: reengineering XCOM. Radiat. Phys. Chem. 60, 23 (2001).10.1016/S0969-806X(00)00324-8Suche in Google Scholar

22. Akman, F., Kaçal, M. R., Akman, F., Soylu, M. S.: Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005 (2017).10.1139/cjp-2016-0811Suche in Google Scholar

23. Gaikwad, D. K., Sayyed, M. I., Obaid, S. S., Issa, S. A. M., Pawar, P. P.: Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. J. Alloys Compd. 765, 451 (2018).10.1016/j.jallcom.2018.06.240Suche in Google Scholar

24. Tufekci, M. M., Gokce, A.: Development of heavyweight high performance fiber reinforced cementitious composites (HPFRCC) – part II: X-ray and gamma radiation – shielding properties. Constr. Build. Mater. 163, 326 (2018).10.1016/j.conbuildmat.2017.12.086Suche in Google Scholar

25. Shamshad, L., Rooh, G., Limkitjaroenporn, P., Srisittipokakun, N., Chaiphaksa, W., Kim, H. J., Kaewkhao, J.: A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energ. 97, 53 (2017).10.1016/j.pnucene.2016.12.014Suche in Google Scholar

26. El-bashir, B. O., Sayyed, M. I., Zaid, M. H. M., Matori, K. A.: Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids 468, 92 (2017).10.1016/j.jnoncrysol.2017.04.031Suche in Google Scholar

27. Mann, H. S., Brar, G. S., Mudahar, G. S.: Gamma ray shielding effectiveness of novel light weight clay flyash bricks. Radiat. Phys. Chem. 127, 97 (2016).10.1016/j.radphyschem.2016.06.013Suche in Google Scholar

28. Akman, F., Durak, R., Kacal, M. R., Bezgin, F.: Study of absorption parameters around the K edge for selected compounds of Gd. X-ray Spectrom. 45, 103 (2016).10.1002/xrs.2676Suche in Google Scholar

29. Obaid, S. S., Sayyed, M. I., Gaikwad, D. K., Pawar, P. P.: Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86 (2018).10.1016/j.radphyschem.2018.02.026Suche in Google Scholar

30. More, C. V., Lokhande, R. M., Pawar, P. P.: Effective atomic number and electron density of amino acids within the energy range of 0.122–1.330 MeV. Radiat. Phys. Chem. 125, 14 (2016).10.1016/j.radphyschem.2016.02.024Suche in Google Scholar

31. Kumar, A., Sayyed, M. I., Dong, M., Xue, X.: Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Non-Cryst. Solids 48, 604 (2018).10.1016/j.jnoncrysol.2017.12.001Suche in Google Scholar

32. Sayyed, M. I., Akman, F., Geçibesler, I. H., Tekin, H. O.: Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. Nucl. Sci. Tech. 29, 144 (2018).10.1007/s41365-018-0475-0Suche in Google Scholar

33. Akman, F., Sayyed, M. I., Kaçal, M. R., Tekin, H. O.: Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV–1333 keV. J. Alloy. Compd. 772, 516 (2019).10.1016/j.jallcom.2018.09.177Suche in Google Scholar

34. Sayyed, M. I., Akman, F., Turan, V., Araz, A.: Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta. 107, 83 (2019).10.1515/ract-2018-2996Suche in Google Scholar

Received: 2018-09-23
Accepted: 2018-11-15
Published Online: 2018-12-08
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3062/html
Button zum nach oben scrollen