Home Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets
Article
Licensed
Unlicensed Requires Authentication

Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets

  • Anthony J. DeGraffenreid , Dmitri G. Medvedev , Timothy E. Phelps , Matthew D. Gott , Suzanne V. Smith , Silvia S. Jurisson and Cathy S. Cutler EMAIL logo
Published/Copyright: January 10, 2019

Abstract

Experiments were performed to evaluate production of 72Se, parent radionuclide of the positron emitter 72As, at high energy at the Brookhaven Linac Isotope Producer (BLIP). Excitation functions for 75As(p, xn)72/75Se in the 52-105 MeV energy range were measured by irradiating thin gallium arsenide (GaAs) wafers. Maximum cross section value for the natAs(p, 4n)72Se reaction in the energy range was 103±9 mb at 52±1 MeV. Production size GaAs and arsenic metal (As°) targets were irradiated with 136 μA and 165 μA beam current possessing an initial Linac energy of 117 MeV. A total of 3.77±0.1 GBq (102±3 mCi) of 72Se was produced from a GaAs target at a calculated target entrance energy of 105.4 MeV, and 13.8±0.3 GBq (373±8 mCi) of 72Se from an As° target at a calculated incident energy of 49.5 MeV irradiated for 116.5 h and 68.9 h, respectively.

Award Identifier / Grant number: YN0100000

Award Identifier / Grant number: DGE-0965983

Funding statement: This study was supported by funding provided by the Department of Energy, Office of Nuclear Physics, subprogram Production of High Specific Activity (Funder Id: http://dx.doi.org/10.13039/100006147, DE-ST001020) and Brookhaven National Laboratory Isotope LDRD/Program Development (Funder Id: http://dx.doi.org/10.13039/100006231, YN0100000). Trainee support is acknowledged from the National Science Foundation under IGERT award Funder Id: http://dx.doi.org/10.13039/100000001, DGE-0965983 (M.D. Gott and T.E. Phelps) and the Department of Energy Office of Science Graduate Student Research (SCGSR) award Funder Id: http://dx.doi.org/10.13039/100000015, DE-AC05-06OR23100 in 2014 (M. D. Gott) and 2015 (T.E. Phelps). The authors would also like to thank the Center for Functional Nanomaterials for its material analysis infrastructure related to thermal gravimetric analysis. A special thanks to Don Elliott from the instrumentation division at BNL for laser cutting GaAs targets, and the BLIP operator, TPL operators, quality assurance manager, and engineer (Jason Nalepa, Lisa Muench, Slawko Kurzak, Jack Eng, and Christian Cullen) involved with this project.

References

1. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E.: Measurement of Pharmacokinetics of Yttrium-86 Radiopharmaceuticals with PET and Radiation Dose Calculation of Analogous Yttrium-90 Radiotherapeutics. J. Nucl. Med. 34, 2222 (1993).Search in Google Scholar PubMed

2. Nayak, T. K., Brechbiel, M. W.: Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjugate Chem. 20, 825 (2009).10.1021/bc800299fSearch in Google Scholar

3. Sweet, W. H., Brownell, G. L.: Localization of intracranial lesions by scanning with positron-emitting arsenic. J. Am. Med. Assoc. 157, 1183 (1955).10.1001/jama.1955.02950310009002Search in Google Scholar PubMed

4. Emran, A., Hosain, F., Spencer, R. P., Kolstad, K. S.: Synthesis and biodistribution of radioarsenic labeled dimethylarsinothiols: derivatives of penicillamine and mercaptoethanol. International J. Nucl. Med. Biol. 11, 259 (1984).10.1016/0047-0740(84)90009-3Search in Google Scholar

5. Hosain, F., Emran, A., Spencer, R. P., Clampitt, K. S.: Synthesis of radioarsenic labeled dimethylchloroarsine for derivation of a new group of radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 33, 1477 (1982).10.1016/0020-708X(82)90192-2Search in Google Scholar

6. Lindgren, A., Vahter, M., Dencker, L.: Autoradiographic studies on the distribution of arsenic in mice and hamsters administered 74As-arsenite or -arsenate. Acta Pharmacol. Toxicol. 51, 253 (1982).10.1111/j.1600-0773.1982.tb01023.xSearch in Google Scholar PubMed

7. Jennewein, M., Schmidt, A., Novgorodov, A. F., Qaim S. M., Rösch, F.: A no-carrier-added 72Se/72As radionuclide generator based on distillation. Radiochim. Acta 92, 245 (2004).10.1524/ract.92.4.245.35611Search in Google Scholar

8. Jennewein, M., Qaim Syed, M., Kulkarni, P. V., Mason, R. P., Hermanne, A., Rösch, F.: A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim. Acta 93, 579 (2005).10.1524/ract.2005.93.9-10.579Search in Google Scholar

9. Maki, Y., Murakami, Y.: The separation of arsenic-77 in a carrier-free state from the parent nuclide germanium-77 by a thin-layer chromatographic method. J. Radioanal. Chem. 22, 5 (1974).10.1007/BF02518087Search in Google Scholar

10. Gott, M. D., DeGraffenreid, A. J., Feng, Y., Phipps, M. D., Wycoff, D. E., Embree, M. F., Cutler, C. S., Ketring, A. R., Jurisson, S. S.: Chromatographic separation of germanium and arsenic for the production of high purity 77As. J. Chromatogr. A 1441, 68 (2016).10.1016/j.chroma.2016.02.074Search in Google Scholar PubMed PubMed Central

11. Chattopadhyay, S., Pal, S., Vimalnath, K. V., Das, M. K.: A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Appl. Radiat. Isot. 65, 1202 (2007).10.1016/j.apradiso.2007.05.010Search in Google Scholar PubMed

12. Bokhari, T. H., Ahmad, M., Khan, I. U.: Separation of no-carrier-added arsenic-77 from neutron irradiated germanium. Radiochim. Acta 97, 503 (2009).10.1524/ract.2009.1644Search in Google Scholar

13. Jennewein, M., Qaim, S. M., Hermanne, A., Jahn, M., Tsyganov, E., Slavine, N., Seliounine, S., Antich, P. A., Kulkarni, P. V., Thorpe, P. E., Mason, R. P., Rosch, F.: A new method for radiochemical separation of arsenic from irradiated germanium oxide. Appl. Radiat. Isot. 63, 343 (2005).10.1016/j.apradiso.2005.04.005Search in Google Scholar PubMed

14. Mushtaq, A., Qaim, S. M., Stöcklin, G.: Production of 73Se via (p, 3n) and (d, 4n) reactions on arsenic. Appl. Radiat. Isot. 39, 1085 (1988).10.1016/0883-2889(88)90146-3Search in Google Scholar

15. Ellison, P. A., Barnhart, T. E., Engle, J. W., Nickles, R. J., DeJesus, O. T.: Production and chemical isolation procedure of positron-emitting isotopes of arsenic for environmental and medical applications. AIP Conf. Proc. 1509, 135 (2012).10.1063/1.4773955Search in Google Scholar

16. Takács, S., Takács, M. P., Ditrói, F., Aikawa, M., Haba, H., Komori, Y.: Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation. Nucl. Instrum. Methods Phys. Res. B 383, 213 (2016).10.1016/j.nimb.2016.07.015Search in Google Scholar

17. Ismail, M.: Measurement and analysis of the excitation function for alpha-induced reactions on Ga and Sb isotopes. Phys. Rev. C 41, 87 (1990).10.1103/PhysRevC.41.87Search in Google Scholar PubMed

18. Mushtaq, A., Qaim, S. M.: Excitation functions of α- and 3He-particle induced nuclear reactions on natural germanium: evaluation of production routes for 73Se. Radiochim. Acta 50, 27 (1990).10.1524/ract.1990.50.12.27Search in Google Scholar

19. Spahn, I., Steyn, G. F., Nortier, F. M., Coenen, H. H., Qaim, S. M.: Excitation functions of natGe(p,xn)71,72,73,74As reactions up to 100 MeV with a focus on the production of 72As for medical and 73As for environmental studies. Appl. Radiat. Isot. 65, 1057 (2007).10.1016/j.apradiso.2007.04.012Search in Google Scholar PubMed

20. Shehata, M. M., Scholten, B., Spahn, I., Coenen, H. H., Qaim, S. M.: Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J. Radioanal. Nucl. Chem. 287, 435 (2010).10.1007/s10967-010-0699-xSearch in Google Scholar

21. Ellison, P. A., Barnhart, T. E., Chen, F., Hong, H., Zhang, Y., Theuer, C. P., Cai, W., Nickles, R. J., DeJesus, O. T.: High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjugate Chem. 27, 179 (2016).10.1021/acs.bioconjchem.5b00592Search in Google Scholar PubMed PubMed Central

22. Ballard, B., Wycoff, D., Birnbaum, E. R., John, K. D., Lenz, J. W., Jurisson, S. S., Cutler, C. S., Nortier, F. M., Taylor, W. A., Fassbender, M. E.: Selenium-72 formation via natBr(p,x) induced by 100 MeV protons: Steps towards a novel 72Se/72As generator system. Appl. Radiat. Isot. 70, 595 (2012).10.1016/j.apradiso.2012.01.018Search in Google Scholar

23. Ballard, B., Nortier, M. F., Birnbaum, E. R., John, K. D., Phillips, D. R., Fassbender, M. E.: Radioarsenic from a portable 72Se/72As generator: a current perspective. Curr. Radiopharm. 5, 264 (2012).10.2174/1874471011205030264Search in Google Scholar

24. Jurisson, S. S., Wycoff, D. E., DeGraffenreid, A., Embree, M. F., Ketring, A. R., Cutler, C. S., Fassbender, M. E., Ballard, B.: Separation methods for high specific activity radioarsenic. AIP Conf. Proc. 1509, 215 (2012).10.1063/1.4773971Search in Google Scholar

25. Wycoff, D. E., Gott, M. D., DeGraffenreid, A. J., Morrow, R. P., Sisay, N., Embree, M. F., Ballard, B., Fassbender, M. E., Cutler, C. S., Ketring, A. R., Jurisson, S. S.: Chromatographic separation of selenium and arsenic: A potential 72Se/72As generator. J. Chromatogr. A 1340, 109 (2014).10.1016/j.chroma.2014.03.033Search in Google Scholar

26. Phillips, D. R., Moody, D. C., Taylor, W. A., Segura, N. J., Pate, B. D.: Electrolytic separation of selenium isotopes from proton irradiated RbBr targets. Appl. Radiat. Isot. 38, 521 (1987).10.1016/0883-2889(87)90199-7Search in Google Scholar

27. Miller, D. A., Grant, M., Erdal, B. R., Whipple, R. E., O‘Brien, H. A.: Nuclear spallation as a mechanism for radioisotope production: cross sections for selected nuclides. J. Radioanal. Nucl. Chem. 123, 643 (1988).10.1007/BF02034924Search in Google Scholar

28. Dmitriev, P. P., Molin, G. A., Konstantinov, I. O., Krasnov, N. N., Panarii, M. V.: Yields of Se-72 and Se-75 in nuclear reactions with protons, deuterons, and α-particles. Atomic Energy 34, 499 (1973).10.1007/BF01163758Search in Google Scholar

29. Amiel, S.: Reactions of alpha particles with germanium-70 and zinc-70. Phys. Rev. 116, 415 (1959).10.1103/PhysRev.116.415Search in Google Scholar

30. Calboreanu, A., Salagean, O., Pencea, C., Zimmer, K. W., Ciocanel, A.: Formation and decay of the compound nucleus in alpha induced reaction on 70Ge. Rev. Roum. Phys. 32, 725 (1987).Search in Google Scholar

31. Brodovitch, J. C., Hogan, J. J., Burns, K. I.: The pre-equilibrium statistical model: Comparison of calculation with two (p, xn) reactions. J. Inorg. Nucl. Chem. 38, 1581 (1976).10.1016/0022-1902(76)80639-2Search in Google Scholar

32. Röhm, H. F., Münzel, H.: Excitation functions for deuteron reactions with 75As. J. Inorg. Nucl. Chem. 34, 1773 (1972).10.1016/0022-1902(72)80523-2Search in Google Scholar

33. Church, L. B., Caretto, A. A.: Study of (xp,xn) Reactions at 400 MeV. Phys. Rev. 178, 1732 (1969).10.1103/PhysRev.178.1732Search in Google Scholar

34. Grütter, A.: Cross sections for reactions with 593 and 540 MeV protons in aluminium, arsenic, bromine, rubidium and yttrium. Int. J. Appl. Radiat. Isot. 33, 725 (1982).10.1016/0020-708X(82)90092-8Search in Google Scholar

35. Blessing, G., Lavi, N., Hashimoto, K., Qaim, S. M.: Thermochromatographic separation of radioselenium from irradiated Cu3As target: Production of no-carrier added 75Se. Radiochim. Acta 65, 93 (1994).10.1524/ract.1994.65.2.93Search in Google Scholar

36. Blessing, G., Lavi, N., Qaim, S. M.: Production of 73Se via the 70Ge(α, n)-process using high current target materials. Appl. Radiat. Isot. 43, 455 (1992).10.1016/0883-2889(92)90121-TSearch in Google Scholar

37. Otuka, N., Takács, S.: Definitions of radioisotope thick target yields. Radiochim. Acta 103, 1 (2015).10.1515/ract-2013-2234Search in Google Scholar

38. Nozaki, T., Itoh, Y., Ogawa, K.: Yield of 73Se for various reactions and its chemical processing. Int. J. Appl. Radiat. Isot. 30, 595 (1979).10.1016/0020-708X(79)90076-0Search in Google Scholar

39. Levkovskij, V. N.: Middle mass nuclides (A=40-100) activation cross sections by medium energy (E=10-50 MeV) protons and α-particles (Experiments and Systematics). Inter Vesi, Moscow (1991).Search in Google Scholar

40. Johnson, C. H., Trail, C. C., Galonsky, A.: Thresholds for (xp, xn) reactions on 26 intermediate-weight nuclei. Phys. Rev. 136, B1719 (1964).10.1103/PhysRev.136.B1719Search in Google Scholar

41. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H.: Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 85, 101 (2014).10.1016/j.apradiso.2013.10.004Search in Google Scholar PubMed

42. Coenen Heinz, H., Gee Antony, D., Adam, M., Antoni, G., Cutler Cathy, S., Fujibayashi, Y., Jeong Jae, M., Mach Robert, H., Mindt Thomas, L., Pike Victor, W., Windhorst Albert, D.: International consensus radiochemistry nomenclature guidelines. Radiochim. Acta 107(7), 623 (2018).10.1515/ract-2018-9001Search in Google Scholar

43. Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V.: EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 108, 2655 (2007).10.1016/j.nds.2007.11.003Search in Google Scholar

44. Koning, A. J., Hilaire, S., Duijvestijn, M. C.: TALYS: Home. http://www.talys.eu/.Search in Google Scholar

45. Medvedev, D. G., Mausner, L. F., Meinken, G. E., Kurczak, S. O., Schnakenberg, H., Dodge, C. J., Korach, E. M., Srivastava, S. C.: Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: closing the 68Zn cycle. Appl. Radiat. Isot. 70, 423 (2012).10.1016/j.apradiso.2011.10.007Search in Google Scholar PubMed

46. Takacs, S., Qaim, S. M., Tarkanyi, F. T., Oblozinsky, P., Gul, K., Hermanne, A., Mustafa, M. G., Nortier, F. M., Scholten, B., Shubin, Y., Zhuang, Y.: Monitor Reactions 2017. https://www-nds.iaea.org/medical/monitor_reactions.html.Search in Google Scholar

47. Titarenko, Y. E., Borovlev, S. P., Butko, M. A., Zhivun, V. M., Pavlov, K. V., Rogov, V. I., Titarenko, A. Y., Tikhonov, R. S., Florya, S. N., Koldobskiy, A. B.: Cross sections for monitor reactions 27Al((p, x)24Na, 27Al(p, x)22Na, and 27Al(p, x)7Be at proton energies in the range 0.04–2.6 GeV. Phys. Atomic Nucl. 74, 507 (2011).10.1134/S1063778811040156Search in Google Scholar

48. Michel, R., Bodemann, R., Busemann, H., Daunke, R., Gloris, M., Lange, H. J., Klug, B., Krins, A., Leya, I., Lüpke, M., Neumann, S., Reinhardt, H., Schnatz-Büttgen, M., Herpers, U., Schiekel, T., Sudbrock, F., Holmqvist, B., Condé, H., Malmborg, P., Suter, M., Dittrich-Hannen, B., Kubik, P. W., Synal, H. A., Filges, D.: Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instr. Meth. Phys. Res. B 129, 153 (1997).10.1016/S0168-583X(97)00213-9Search in Google Scholar

49. Zajic, V.: Energy vs. LET Range calculator version 1.24. http://tvdg10.phy.bnl.gov/LETCalc.html.Search in Google Scholar

50. Ziegler, J. F., Biersack, J. P.: The Stopping and Range of Ions in Matter. http://www.srim.org/.Search in Google Scholar

51. Pritychenko, B.: National Nuclear Data Center (NNDC). https://www.nndc.bnl.gov/.Search in Google Scholar

52. Loveland, W.: Modern Nuclear Chemistry, John Wiley & Sons, Inc., Hoboken, New Jersey (2006).Search in Google Scholar

53. Choppin, G. R., Liljenzin, J.-O., Rydberg, J.: Chapter 15 – Production of Radionuclides, in Radiochemistry and Nuclear Chemistry (Third Edition), edited by Rydberg, G. R. C.-O. L. Butterworth-Heinemann, Woburn (2002), p. 388.10.1016/B978-075067463-8/50015-7Search in Google Scholar

54. Millea, M. F., Kyser, D. F.: Thermal decomposition of gallium arsenide. J. Appl. Phys. 36, 308 (1965).10.1063/1.1713896Search in Google Scholar

55. Yang, H.-C., Seo, Y.-C., Kim, J.-H., Park, H.-H., Kang, Y.: Vaporization characteristics of heavy metal compounds at elevated temperatures. Korean J. Chem. Eng. 11, 232 (1994).10.1007/BF02697389Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-2931).


Received: 2018-01-22
Accepted: 2018-12-06
Published Online: 2019-01-10
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2931/html
Scroll to top button