Home New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding
Article
Licensed
Unlicensed Requires Authentication

New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding

  • Bünyamin Aygün EMAIL logo , Erdem Şakar , Turgay Korkut , Mohammed Ibrahim Sayyed and Abdülhalik Karabulut
Published/Copyright: February 11, 2019

Abstract

In the present work, we developed three new high temperature resistant heavy concretes as novel radiation shielding materials. For this purpose, chrome ore (FeCr2O4), hematite (Fe2O3), titanium oxide (TiO2), aluminum oxide (Al2O3), limonite [FeO (OH) nH2O], siderite (FeCO3), barite (BaSO4), nickel oxide (NiO) materials and alumina cement were used. Mass combination ratios of components and total macroscopic cross sections (scattering, absorption, capture, fission) of the samples were calculated by using GEANT4 code. The resistances of the prepared samples were evaluated in terms of compression strength after exposure at the 1000 °C temperature. Neutron equivalent dose rate measurements were carried out by using 4.5 MeV 241Am-Be neutron source and BF3 detector. All results were compared with normal weight concrete and paraffin. The results of neutron dose indicate that neutron absorption ability of the new heavy concretes is higher than normal weight concrete and paraffin. In addition to neutron measurements, different γ-ray shielding parameters such as mass attenuation coefficient (MAC), effective atom numbers (Zeff), half value layer (HVL) and mean free path (MFP) have been calculated using WinXCOM software in order to investigate the effectiveness of using the prepared concretes as a radiation shielding materials. Gamma-ray results were compared with concretes and Pb-based glass.

Funding source: Ataturk University

Award Identifier / Grant number: 2016/FM71

Funding source: Agri Ibrahim Cecen University

Award Identifier / Grant number: MYO.18.001

Funding statement: This work is financially supported by Ataturk University with Grant No. 2016/FM71 and Agri Ibrahim Cecen University with Grant no. MYO.18.001.

  1. Compliance with Ethical Standards: The authors declare that they have no conflict of interest.

References

1. Monte, F. L., Gambarova, P. G.: Thermo-mechanical behavior of baritic concrete exposed to high temperature. Cement Concrete Comp. 53, 305 (2014).10.1016/j.cemconcomp.2014.07.009Search in Google Scholar

2. Kosmatka, S. H., Kerkhoff, B., Panarese, W. C. (Eds.): Design and control of concrete mixtures, 14th ed. Portland Cement Association, Illinois, pp. 1–358 (2002).Search in Google Scholar

3. Vodak, F., Vydra, K., Trtik, K., Kapickova, O.: Effect of gamma irradiation on properties of hardened cement paste. Mater. Struct. 44, 101 (2011).10.1617/s11527-010-9612-xSearch in Google Scholar

4. Türck, H., Calzada, E., Schillinger, B.: Shielding material and shielding element for shielding gamma and neutron radiation, European Patent Specification, EP2355108B1 (2011).Search in Google Scholar

5. Hondorp, H. L.: Neutron and gamma radiation shielding material, structure, and process of making structure, US patent, 4437013A (1984).Search in Google Scholar

6. Shayer, Z.: Borated Concrete-Rubber, US Patent, US20100258751A1 (2010).Search in Google Scholar

7. Mortazavi, S. M. J., Mosleh-Shirazi, M. A., Baradaran-Ghahfarokhi, M., Siavashpour, Z., Farshadi, A., Ghafoori, M., Shahvar, A.: Production of a datolite-based heavy concrete for shielding nuclear reactors and megavoltage radiotherapy rooms. Iran. J. Radiat. Res. 8, 11 (2010).Search in Google Scholar

8. Erdem, M., Baykara, O., Doğru, M., Kuluöztürk, F.: A novel shielding material prepared from solid waste containing lead for gamma ray. Radiat. Phys. Chem. 79, 917 (2010).10.1016/j.radphyschem.2010.04.009Search in Google Scholar

9. Abdo, A. E.: Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields. Ann. Nucl. Energy 29, 1977 (2002).10.1016/S0306-4549(02)00019-1Search in Google Scholar

10. Pavlenko, V. I., Yastrebinskii, R. N., Voronov, D. V.: Investıgatıon of heavy radiation-shielding concrete after activation by fast neutrons and gamma radiation. J. Eng. Phys. Thermophys. 81, 4 (2008).10.1007/s10891-008-0085-5Search in Google Scholar

11. Taniuchi, H., Shimojo, J., Sugihara, Y., Owaki, E.: Cement composite, concrete, concrete cask and method of manufacturing concrete, US Patent, EP1394813A2 (2007).Search in Google Scholar

12. Seltborg, P., Polanski, A., Petrochenkov, S., Lopatkin, A., Gudowski, W., Shvetsov, V.: Radiation shielding of high-energy neutrons in SAD. Nucl. Instr. Meth. Phys. Res. A 550, 313 (2005).10.1016/j.nima.2005.04.071Search in Google Scholar

13. William, J., Quapp, A., Lessing, P.: Radiation shielding composition, US Patent, US6166390A (1998).Search in Google Scholar

14. Singh, V. P., Badiger, N.: Investigation of radiation shielding parameters of ordinary, heavy and super heavy concretes. Nucl. Technol. Radiat. 29, 149 (2014).10.2298/NTRP1402149SSearch in Google Scholar

15. Sakr, K., El-Hakim, E.: Effect of high temperature or fire on heavy weight concrete properties. Cem. Concr. Res. 35, 590 (2005).10.1016/j.cemconres.2004.05.023Search in Google Scholar

16. Bashter, I. I.: Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389 (1997).10.1016/S0306-4549(97)00003-0Search in Google Scholar

17. Akkurt, I., Basyigit, C., Kilincarslan, S., Mavi, B.: The shielding of γ-rays by concretes produced with barite. Prog. Nucl. Energ. 46, 1 (2005).10.1016/j.pnucene.2004.09.015Search in Google Scholar

18. Korkut, T., Karabulut, A., Budak, G., Aygün, B.: Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Appl. Radiat. Isot. 70, 341 (2012).10.1016/j.apradiso.2011.09.006Search in Google Scholar PubMed

19. Yadollahi, A., Nazemi, E., Zolfaghari, A., Ajorloo, A. M.: Optimization of thermal neutron shield concrete mixture using artificial neural network. Nucl. Eng. Des. 305, 146 (2016).10.1016/j.nucengdes.2016.05.012Search in Google Scholar

20. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Zschiesche, D.: GEANT4-a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003).10.1016/S0168-9002(03)01368-8Search in Google Scholar

21. Archor, R. D., Allen, A. H., Hughes, B. P., Quinion, D. W., Thorpe, E. H.: BS 8007: the new code. Structural Engineer 66, 40 (1988).Search in Google Scholar

22. Schaeffer, N. M.: Reactor shielding for nuclear engineers. (1973). U. S. Atomıc Energy Commıssıon Office of Information Services, Virginia, p. 96.10.2172/4479460Search in Google Scholar

23. Gerward, L., Guilbert, N., Jensen, K. B., Leyring, H.: WinXCom–a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71, 653 (2004).10.1016/j.radphyschem.2004.04.040Search in Google Scholar

24. Samarin, A.: Concrete shrinkage – causes and effects to be considered in a structural design, concrete in Australia. Conc. Inst. of Aust. 22, 18 (1996).Search in Google Scholar

25. Kumar, A., Sayyed M. I., Dong, M., Xue, X.: Effect of PbO on the shielding behavior of ZnO–P2O5 glass system using Monte Carlo simulation. J. Non-Cryst. Solids 481, 604 (2018).10.1016/j.jnoncrysol.2017.12.001Search in Google Scholar

26. Sayyed, M. I., Rammah, Y. S., Abouhaswa, A. S., Tekin, H. O., Elbashir, B. O.: ZnO-B2O3-PbO glasses: synthesis and radiation shielding characterization. Physica B Condens. Matter 548, 20 (2018).10.1016/j.physb.2018.08.024Search in Google Scholar

27. Elmahroug, Y., Almatari, M., Sayyed, M. I., Dong, M. G., Tekin, H. O.: Investigation of radiation shielding properties for Bi2O3 - V2O5 - TeO2 glass system using MCNP5 code. J. Non Cryst. Solids 499, 32 (2018).10.1016/j.jnoncrysol.2018.07.008Search in Google Scholar

28. Sayyed, M. I., Tekin, H. O., Altunsoy, E. E., Obaid, S. S., Almatari, M.: Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non Cryst. Solids 498, 167 (2018).10.1016/j.jnoncrysol.2018.06.022Search in Google Scholar

29. Gaikwad, D. K., Obaid, S. S., Sayyed, M. I., Bhosale, R. R., Awasarmol, V. V., Kumar, A., Shirsat, M. D., Pawar, P. P.: Comparative study of gamma ray shielding competence of WO3-TeO2- PbO glass system to different glasses and concretes. Mater. Chem. Phys. 213, 508 (2018).10.1016/j.matchemphys.2018.04.019Search in Google Scholar

30. Sayyed, M. I., Lakshminarayana, G.: Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. J. Non Cryst. Solids 487, 53 (2018).10.1016/j.jnoncrysol.2018.02.014Search in Google Scholar

31. Ersundu, A. E., Büyükyıldız, M., Çelikbilek Ersundu, M., Şakar, E., Kurudirek, M.: The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energ. 104, 280 (2018).10.1016/j.pnucene.2017.10.008Search in Google Scholar

Received: 2018-10-23
Accepted: 2018-11-30
Published Online: 2019-02-11
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3075/html
Scroll to top button