Home Physical Sciences Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
Article
Licensed
Unlicensed Requires Authentication

Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment

  • Md. Ahosan Habib , Triyono Basuki , Sunao Miyashita , Wiseman Bekelesi , Satoru Nakashima , Khamphe Phoungthong , Rahat Khan EMAIL logo , Md. Bazlar Rashid , Abu Reza Md. Towfiqul Islam and Kuaanan Techato EMAIL logo
Published/Copyright: November 17, 2018

Abstract

Coal-fly-ash is one of the major byproducts of coal-based power plant in which naturally occurring radioactive materials (NORMs) are drastically enriched compared to those of feed coals. Thus, improper management of fly-ash may introduce additional radioactivity to the surrounding environment and cause radiological risk. So, in order to study the distribution of radionuclides in soil around a coal-based power plant and to evaluate their radiological risk, soil, coal and fly-ash samples were analyzed by using a HPGe detector for U-238, Ra-226, Th-232 and K-40 radioactivity concentrations. Furthermore, soil minerals were also studied by X-ray diffractometer to assess the mineralogical provenance of the radionuclides. Mean radioactivity concentrations (in Bq·kg−1) of U-238, Ra-226, Th-232 and K-40 in soil samples are 102.9±41.4, 63.6±7.4, 103.4±13.9 and 494.2±107.5, respectively which are comparatively higher than the typical world mean value. Elevated levels of radioactivity are likely due to the presence of illite, kaolinite, monazite, rutile and zircon minerals in the soil samples rather than technogenic contributions from the power plant. Furthermore, mean soil contamination factor (CF) are close to unity and mean pollution load index (PLI) is below unity while the average radium equivalent activity (Raeq in Bq·kg−1), external hazard index (Hex), absorbed γ dose rate (D in nGyh−1), annual effective dose rate (E in mSv·y−1) and excess lifetime cancer risk (ELCR in Sv−1) are 249.5±21.7, 0.67±0.06, 114.2±9.4, 0.20±0.02, 4.9×10−4±0.4×10−4, respectively, which are within the permissible limit. Thus, in terms of radioactivity concentrations and associated environmental and radiological indices, the effect of the power plant is insignificant.

Acknowledgements

The authors would like to acknowledge the Thailand’s Education Hub for Southern Region of ASEAN Countries (TEH-AC) (Contract No.: THE-AC014/2016), funds for Doctor of Philosophy programme in Sustainable Energy Management, Faculty of Environmental Management, Graduate School, Prince of Songkla University, Thailand, and the authority of Geological Survey of Bangladesh (GSB), Bangladesh for all other forms of support for this study.

  1. Conflict of interest: There is no conflict of interest.

References

1. Parial, K., Guin, R., Agrahari, S., Sengupta, D.: Monitoring of radionuclide migration around Kolaghat thermal power plant, West Bengal, India. J. Radioanal. Nucl. Chem. 307(1), 533 (2016).10.1007/s10967-015-4152-zSearch in Google Scholar

2. UNSCEAR: Sources and effects of ionizing radiation; United Nations. Report to the General Assembly, with Scientific Annexes. United Nations (A/55/46), New York (2000).Search in Google Scholar

3. Dragović, S., Ćujić, M., Slavković-Beškoski, L., Gajić, B., Bajat, B., Kilibarda, M., Onjia, A.: Trace element distribution in surface soils from a coal burning power production area: a case study from the largest power plant site in Serbia. Catena 104, 288 (2013).10.1016/j.catena.2012.12.004Search in Google Scholar

4. Siegel, M. D., Bryan, C. R.: Radioactivity, geochemistry, and health. In: H. D. Holland, K. K. Turekian (Eds.), Treatise on Geochemistry (2014), 2nded. Chapter 11.6, Elsevier Ltd., Oxford, UK, p. 191.10.1016/B978-0-08-095975-7.00906-2Search in Google Scholar

5. Bhangare, R. C., Tiwari, M., Ajmal, P. Y., Sahu, S. K., Pandit, G. G.: Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J. Radioanal. Nucl. Chem. 300(1), 17 (2014).10.1007/s10967-014-2942-3Search in Google Scholar

6. Charro, E., Pardo, R., Peña, V.: Chemometric interpretation of vertical profiles of radionuclides in soils near a Spanish coal-fired power plant. Chemosphere 90(2), 488 (2013).10.1016/j.chemosphere.2012.08.008Search in Google Scholar PubMed

7. Papaefthymiou, H. V., Manousakas, M., Fouskas, A., Siavalas, G.: Spatial and vertical distribution and risk assessment of natural radionuclides in soils surrounding the lignite-fired power plants in megalopolis basin, Greece. Radiat. Prot. Dosim. 156(1), 49 (2013).10.1093/rpd/nct037Search in Google Scholar PubMed

8. Mahur, A. K., Gupta, M., Varshney, R., Sonkawade, R. G., Verma, K. D., Prasad, R.: Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of national thermal power corporation, Dadri (U.P.), India. Radiat. Meas. 50, 130 (2013).10.1016/j.radmeas.2012.09.008Search in Google Scholar

9. Coles, D. G., Ragaini, R. C., Ondov, J. M.: Behavior of natural radionuclides in western coal-fired power plants. Environ. Sci. Technol. 12(4), 442 (1978).10.1021/es60140a007Search in Google Scholar

10. Al-Hamarneh, I. F., Alkhomashi, N., Almasoud, F. I.: Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J. Environ. Radioact. 160, 1 (2016).10.1016/j.jenvrad.2016.04.012Search in Google Scholar PubMed

11. Dai, L., Wei, H., Wang, L.: Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: a case study from the city of Baoji, China. Environ. Res. 104(2), 201 (2007).10.1016/j.envres.2006.11.005Search in Google Scholar PubMed

12. Halim, M. A., Majumder, R. K., Zaman, M. N.: Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab. J. Geosci. 8(6), 3391 (2015).10.1007/s12517-014-1480-1Search in Google Scholar

13. Nenadović, S., Nenadović, M., Kljajević, L., Vukanac, I., Poznanović, M., Mihajlović-Radosavljević, A., Pavlović, V.: Vertical distribution of natural radionuclides in soil: assessment of external exposure of population in cultivated and undisturbed areas. Sci. Total Environ. 429, 309 (2012).10.1016/j.scitotenv.2012.04.054Search in Google Scholar

14. Eisenbud, M., Petrow, H. G.: Radioactivity in the atmospheric effluents of power plants that use fossil fuels. Science 144(3616), 288 (1964).10.1126/science.144.3616.288Search in Google Scholar

15. Ganatsios, S. S., Tsikritzis, L. I., Duliu, O. G., Sawidis, T. D.: Natural 228Ra, 226Ra, 40K, and artificial 137Cs radionuclides distribution in soil in areas of lignite power plants of Western Macedonia. J. Trace Microprobe Tech. 19(2), 259 (2001).10.1081/TMA-100002215Search in Google Scholar

16. Charro, E., Pena, V.: Environmental impact of natural radionuclides from a coal-fired power plant in Spain. Radiat. Prot. Dosim. 153(4), 485 (2013).10.1093/rpd/ncs126Search in Google Scholar

17. Janković, M. M., Rajačić, M. M., Todorović, D. J., Sarap, N. B.: Study of radioactivity in environment around power plants tent a and Kolubara due to coal burning for 2015. 1, 84 (2016).10.21175/RadProc.2016.20Search in Google Scholar

18. Bem, H., Wieczorkowski, P., Budzanowski, M.: Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the Lodz region of Poland. J. Environ. Radioact. 61(2), 191 (2002).10.1016/S0265-931X(01)00126-6Search in Google Scholar

19. Flues, M., Moraes, V., Mazzilli, B. P.: The influence of a coal-fired power plant operation on radionuclide concentrations in soil. J. Environ. Radioact. 63(3), 285 (2002).10.1016/S0265-931X(02)00035-8Search in Google Scholar

20. Papp, Z., Dezső, Z., Daróczy, S.: Significant radioactive contamination of soil around a coal-fired thermal power plant. J. Environ. Radioact. 59(2), 191 (2002).10.1016/S0265-931X(01)00071-6Search in Google Scholar

21. Gür, F., Yaprak, G.: Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity. J. Env. Sci. Heal. A 45(14), 1900 (2010).10.1080/10934529.2010.520608Search in Google Scholar PubMed

22. Papastefanou, C.: Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review. J. Environ. Radioact. 101(3), 191 (2010).10.1016/j.jenvrad.2009.11.006Search in Google Scholar PubMed

23. Lu, X., Zhao, C., Chen, C., Liu, W.: Radioactivity level of soil around Baqiao coal-fired power plant in China. Radiat. Phys. Chem. 81(12), 1827 (2012).10.1016/j.radphyschem.2012.07.013Search in Google Scholar

24. Amin, Y. M., Uddin Khandaker, M., Shyen, A. K. S. S., Mahat, R. H., Nor, R. M., Bradley, D. A.: Radionuclide emissions from a coal-fired power plant. Appl. Radiat. Isot. 80, 109 (2013).10.1016/j.apradiso.2013.06.014Search in Google Scholar

25. Lu, X., Liu, W., Zhao, C., Chen, C.: Environmental assessment of heavy metal and natural radioactivity in soil around a coal-fired power plant in China. J. Radioanal. Nucl. Chem. 295(3), 1845 (2013).10.1007/s10967-012-2241-9Search in Google Scholar

26. Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., Gajić, B., Miljanić, Š.: Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ. Sci. Pollut. Res. 22(13), 10317 (2015).10.1007/s11356-014-3888-2Search in Google Scholar

27. Liu, G., Luo, Q., Ding, M., Feng, J.: Natural radionuclides in soil near a coal-fired power plant in the high background radiation area, South China. Environ. Monit. Assess. 187(6), 356 (2015).10.1007/s10661-015-4501-ySearch in Google Scholar

28. Gören, E., Turhan, Ş., Kurnaz, A., Garad, A. M. K. K., Duran, C., Uğur, F. A., Yeğingil, Z.: Environmental evaluation of natural radioactivity in soil near a lignite-burning power plant in Turkey. Appl. Radiat. Isot. 129, 13 (2017).10.1016/j.apradiso.2017.07.059Search in Google Scholar

29. Powercell.: Annual report (2017). Power Division, Ministry of Power, Energy and Mineral Recourses, Bangladesh, (https://mpemr.gov.bd/energy-mineral/).Search in Google Scholar

30. Bangladesh Bureau of Statistics (BBS): Dinajpiur District Statistics (2011). Statistics & Informatics Division, Ministry of Planning, Bangladesh. (http://www.bbs.gov.bd/).Search in Google Scholar

31. Alam, M.: Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69(C), 125 (1989).10.1016/0031-0182(89)90159-4Search in Google Scholar

32. Alam, M. K., Hasan, A. K. M. S., Khan, M. R., Whitney, J. W.: Geological Map of Bangladesh. Scales 1:1,000,000. Geological Survey of Bangladesh, Dhaka (1990).Search in Google Scholar

33. Farhaduzzaman, M., Abdullah, W. H., Islam, M. A., Hasiah, W., Islam, A.: Petrographic characteristics and palaeoenvironment of the Permian coal resources of the Barapukuria and Dighipara basins, Bangladesh. J. Asian Earth Sci. 64, 272 (2013).10.1016/j.jseaes.2012.12.017Search in Google Scholar

34. Bakr, M. A., Rahman, Q. M. A., Islam, M. M., Islam, M. K., Uddin, M. N., Resan, S. A., Haider, M. J., Islam, M. S., Ali, M. W., Choudhury, M. E. A., Mannan, K. M., Anam, A. N. M. H.: Geology and coal deposit of Barapukuria Basin, Dinajpur district, Bangladesh (1996). 8(1), Records of the Geological Survey of Bangladesh, Government of the People’s Republic of Bangladesh.Search in Google Scholar

35. IAEA.: Soil sampling for environmental contaminants. IAEA-TECDOC-1415, International Atomic Energy Agency, Vienna, Austria (2004).Search in Google Scholar

36. Walkley, A., Black, I. A.: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1), 29 (1934).10.1097/00010694-193401000-00003Search in Google Scholar

37. Klute, A.: Methods of Soil Analysis. Part 1 – Physical and Mineralogical Methods, 2nd ed. American Society of Agronomy, Madison, Wis. (1986).10.2136/sssabookser5.1.2edSearch in Google Scholar

38. Bowles, J. E.: Engineering Properties of Soils and Their Measurement, 4th ed. McGraw-Hill, New York (1992).Search in Google Scholar

39. IAEA.: Measurement and Calculation of Radon Releases from NORM Residues. Technical Reports Series 474, International Atomic Energy Agency, Vienna, Austria (2013).Search in Google Scholar

40. L’Annunziata, Michael, F.: Handbook of Radioactivity Analysis, 2nd ed. Elsevier Science, Amsterdam (2014).Search in Google Scholar

41. IAEA.: Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. IAEA Technical Report Series 419 1363, International Atomic Energy Agency, Vienna, Austria (2003).Search in Google Scholar

42. Mange, M. A., Maurer, H.: Heavy Minerals in Colour, 1st ed. Dordrecht: Springer Netherlands: Imprint: Springer (1992).10.1007/978-94-011-2308-2Search in Google Scholar

43. Liu, G., Vassilev, S. V., Gao, L., Zheng, L., Peng, Z.: Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Convers. Manag. 46(13–14), 2001 (2005).10.1016/j.enconman.2004.11.002Search in Google Scholar

44. Oliveira, M. L. S., Ward, C. R., French, D., Hower, J. C., Querol, X., Silva, L. F. O.: Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 94, 314 (2012).10.1016/j.coal.2011.10.004Search in Google Scholar

45. Hakanson, L.: An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14(8), 975 (1980).10.1016/0043-1354(80)90143-8Search in Google Scholar

46. Tomlinson, D. L., Wilson, J. G., Harris, C. R., Jeffrey, D. W.: Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländ. Meeresuntersuchungen 33(1), 566 (1980).10.1007/BF02414780Search in Google Scholar

47. Mohiuddin, K. M., Ogawa, Y., Zakir, H. M., Otomo, K., Shikazono, N.: Heavy metals contamination in water and sediments of an urban river in a developing country. Int. J. Environ. Sci. Technol. 8(4), 723 (2011).10.1007/BF03326257Search in Google Scholar

48. Beretka, J., Mathew, P. J.: Natural radioactivity of Australian building materials, industrial wastes and by-products. Heal. Phys. 48(1), 87 (1985).10.1097/00004032-198501000-00007Search in Google Scholar

49. Krieger, R.: Radioactivity of construction materials. Betonwerk Fertigteil Techn. 47(468), (1981).Search in Google Scholar

50. ICRP.: Recommendations of the International Commission on Radiological Protection (1990). 21(1–3), publication 60.Search in Google Scholar

51. Bowen, H. J. M.: Environmental Chemistry of the Elements, Academic Press, London, New York (1979).Search in Google Scholar

52. Rudnick, R. L., Gao, S.: Composition of the Continental Crust. Treatise on Geochemistry, 2nd ed., p. 1 (Chapter 4). Elsevier, Amsterdam, Netherlands; Oxford, England; Waltham, Massachusetts (2014).10.1016/B978-0-08-095975-7.00301-6Search in Google Scholar

53. Carini, F.: Radionuclide transfer from soil to fruit. J. Environ. Radioact. 52(2), 237 (2001).10.1016/S0265-931X(00)00035-7Search in Google Scholar

54. Baize, D.: Soil Science Analyses: A Guide to Current Use. John Wiley, Chichester, New York (1993).Search in Google Scholar

55. Rashed-Nizam, Q. M., Rahman, M. M., Kamal, M., Chowdhury, M. I.: Assessment of radionuclides in the soil of residential areas of the Chittagong metropolitan city, Bangladesh and evaluation of associated radiological risk. J. Radiat. Res. 56(1), 22 (2015).10.1093/jrr/rru073Search in Google Scholar PubMed PubMed Central

56. Hamid, B. N., Chowdhury, M. I., Alam, M. N., Islam, M. N.: Study of natural radionuclide concentrations in an area of elevated radiation background in the northern districts of Bangladesh. Radiat. Prot. Dosim. 98(2), 227 (2002).10.1093/oxfordjournals.rpd.a006714Search in Google Scholar

57. Mishra, U. C. Ã.: Environmental impact of coal industry and thermal power plants in India. J. Environ. Radioact. 72(1–2), 35 (2004).10.1016/S0265-931X(03)00183-8Search in Google Scholar

58. Flues, M., Camargo, I. M. C., Figueiredo Filho, P. M., Silva, P. S. C., Mazzilli, B. P.: Evaluation of radionuclides concentration in Brazilian coals. Fuel, 86(5–6), 807 (2007).10.1016/j.fuel.2006.09.013Search in Google Scholar

59. Cevik, U., Damla, N., Koz, B., Kaya, S.: Radiological Characterization around the Afsin-Elbistan coal-fired power plant in Turkey. Energy Fuels 22(1), 428 (2008).10.1021/ef700374uSearch in Google Scholar

60. Chowdhury, M. I., Kamal, M., Alam, M. N., Yeasmin, S., Mostafa, M. N.: Distribution of naturally occurring radionuclides in soils of the southern districts of Bangladesh. Radiat. Prot. Dosim. 118(1), 126 (2006).10.1093/rpd/nci335Search in Google Scholar

61. Cevik, U., Damla, N., Nezir, S.: Radiological characterization of Cayırhan coal-fired power plant in Turkey. Fuel 86(16), 2509 (2007).10.1016/j.fuel.2007.02.013Search in Google Scholar

62. Sultana, M. S., Muramatsu, Y., Yoshida, S.: Levels of lanthanides and natural radionuclides in the uncultivated soils near industrial area of Bangladesh. Int. J. Environ. Anal. Chem. 83(5), 375 (2003).10.1080/0306731031000104759Search in Google Scholar

63. Khan, R., Parvez, M. S., Tamim, U., Das, S., Islam, M. A, Naher, K., Khan, M. H. R., Nahid, F., Hossain, S. M.: Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochim. Acta 106(6), 1 (2018).10.1515/ract-2017-2867Search in Google Scholar

64. Galbraith, J. H., Saunders, D. F.: Rock classification by characteristics of aerial gamma-ray measurements. J. Geochemical Explor. 18(1), 49 (1983).10.1016/0375-6742(83)90080-8Search in Google Scholar

65. Cicek, A., Koparal, A. S.: Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilekthermal power plant. Chemosphere 57(8), 1031 (2004).10.1016/j.chemosphere.2004.07.038Search in Google Scholar PubMed

66. Vuković, Ž., Mandić, M., Vuković, D.: Natural radioactivity of ground waters and soil in the vicinity of the ash repository of the coal-fired power plant “Nikola Tesla” A – Obrenovac (Yugoslavia). J. Environ. Radioact. 33(1), 41 (1996).10.1016/0265-931X(95)00067-KSearch in Google Scholar

67. Tsikritzis, L. I., Ganatsios, S. S., Duliu, O. G., Kavouridis, C. V., Sawidis, T. D.: Trace elements distribution in soil in areas of lignite power plants of western Macedonia. J. Trace Microprobe Tech. 20(2), 269 (2002).10.1081/TMA-120003729Search in Google Scholar

68. Navas, A., Soto, J., Machín, J.: 238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). Appl. Radiat. Isot. 57(4), 579 (2002).10.1016/S0969-8043(02)00131-8Search in Google Scholar

69. Foth, H. D.: Soils and Mineral Nutrition of Plants. Fundamentals of Soil Science, 7th ed. Wiley, New York (1984).Search in Google Scholar

70. Kabata-pendias, A., Henryk, P.: Trace Elements in Soils and Plants, 3rd ed. BocaCRC Press, Raton, Fla.; London (2001).10.1201/9781420039900Search in Google Scholar

71. Belivermis, M., Kiliç, Ö., Çotuk, Y., Topcuoǧlu, S.: The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ. Monit. Assess. 163(1–4), 15 (2010).10.1007/s10661-009-0812-1Search in Google Scholar

72. Rachkova, N. G., Shuktomova, I. I., Taskaev, A. I.: The state of natural radionuclides of uranium, radium, and thorium in soils. Eurasian Soil Sci. 43(6), 651 (2010).10.1134/S1064229310060050Search in Google Scholar

73. Navas, A., Gaspar, L., López-Vicente, M., MacHín, J.: Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiat. Meas. 46(2), 261 (2011).10.1016/j.radmeas.2010.11.008Search in Google Scholar

74. Yoshida, S., Muramatsu, Y., Tagami, K., Uchida, S.: Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environ. Int. 24(3), 275 (1998).10.1016/S0160-4120(98)00006-3Search in Google Scholar

75. Aftabuzzaman, M., Kabir, S., Islam, M. K., Alam, M. S.: Clay mineralogy of the pleistocene soil horizon in Barind Tract, Bangladesh. J. Geo. Soc. India 81(5), 677 (2013).10.1007/s12594-013-0089-4Search in Google Scholar

76. Finkelman, R. B., Palmer, C. A., Kolker, A., Mroczkowski, S. J.: Quantifying the modes of occurrence of elements in coal. In: Prospects for Coal Science in the 21st Century, Proceeding of the 10th International Conference on Coal Science. Sci. Technol. Press, Shanxi (1999), p. 21.Search in Google Scholar

77. Khan, R., Rouf, M. A., Das, S., Tamim, U., Naher, K., Podder, J., Hossain, S. M.: Spatial and multi-layered assessment of heavy metals in the sand of Cox’s-Bazar beach of Bangladesh. Reg. Stud. Mar. Sci. 16, 171 (2017).10.1016/j.rsma.2017.09.003Search in Google Scholar

78. Kabata-Pendias, A.: Trace Elements in Soils and Plants, 4thed. Taylor and Francis. CRC Press, Boca Raton, FL (2010).10.1201/b10158Search in Google Scholar

79. Manigandan, P. K., Shekar, B. C.: Evaluation of radionuclides in the terrestrial environment of Western Ghats. J. Radiat. Res. Appl. Sci. 7(3), 310 (2014).10.1016/j.jrras.2014.04.001Search in Google Scholar

80. Alam, M. N., Chowdhury, M. I., Kamal, M., Ghose, S., Islam, M. N., Mustafa, M. N., Miah, M. M. H., Ansary, M. M.: The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar, Bangladesh, J. Environ. Radioact. 46(2), 243 (1999).10.1016/S0265-931X(98)00143-XSearch in Google Scholar

81. Yang, Y., Wu, X., Jiang, Z., Wang, W., Lu, J., Lin, J., Wang, L., Hsia, Y.: Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl. Radiat. Isot. 63(2), 255 (2005).10.1016/j.apradiso.2005.02.011Search in Google Scholar PubMed

82. Charro, E., Pardo, R., Pena, V., Peña, V.: Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain. J. Environ. Radioact. 124, 84 (2013).10.1016/j.jenvrad.2013.04.011Search in Google Scholar PubMed

83. Papaefthymiou, H. V., Chourdakis, G., Vakalas, J.: Natural radionuclides content and associated dose rates in fine-grained sediments from Patras-Rion sub-basins, Greece. Radiat. Prot. Dosim. 143(1), 117 (2011).10.1093/rpd/ncq345Search in Google Scholar PubMed

84. Khan, R., Shirai, N., Ebihara, M.: Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances. Earth Planet. Sci. Lett. 422, 18 (2015).10.1016/j.epsl.2015.04.008Search in Google Scholar

85. Tamim, U., Khan, R., Jolly, Y. N., Fatema, K., Das, S., Naher, K., Islam, M. A., Islam, S. M. A., Hossain, S. M.: Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere 155, 509 (2016).10.1016/j.chemosphere.2016.04.099Search in Google Scholar PubMed

86. Papaefthymiou, H. V., Chourdakis, G., Vakalas, J.: Note natural radionuclides content and associated dose rates in fine-grained sediments from Patras-rion. Radiat. Prot. Dosim. 143(1), 117 (2017).10.1093/rpd/ncq345Search in Google Scholar

87. UNSCEAR.: Sources, and Effects of Ionizing Radiations, Annex B: Exposures of the public and workers from various sources of radiation. UNSCEAR 2008, Report to the General Assembly, with annexes, vol. 1, United Nations, New York, USA (2010). http://www.unscear.org.Search in Google Scholar

88. Turhan, Ş., Gören, E., Uğur, F. A., Karataşlı, M., Yeğingil, Z.: Study of the radioactivity in environmental soil samples from Eastern Anatolia Region of Turkey. Radiochim. Acta 106(2), 161 (2018).10.1515/ract-2017-2845Search in Google Scholar

89. Guidotti, L., Carini, F., Rossi, R., Gatti, M., Cenci, R. M., Beone, G. M.: Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy. J. Environ. Radioact. 142, 36 (2015).10.1016/j.jenvrad.2015.01.010Search in Google Scholar PubMed

90. Aközcan, S., Külahcı, F., Mercan, Y.: A suggestion to radiological hazards characterization of 226Ra, 232Th, 40K and 137Cs: spatial distribution modeling. J. Hazard. Mater. 353, 476 (2018).10.1016/j.jhazmat.2018.04.042Search in Google Scholar

91. IAEA.: International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources. Safety Series No. 115, International Atomic Energy Agency, Vienna, Austria (1996).Search in Google Scholar

92. Rosner, G., Bunzl, K., Hötzl, H., Winkler, R.: Low level measurements of natural radionuclides in soil samples around a coal-fired power plant. Nucl. Instr. Meth. Phy. Res. 223(2–3), 585 (1984).10.1016/0167-5087(84)90714-2Search in Google Scholar

Received: 2018-08-08
Accepted: 2018-10-19
Published Online: 2018-11-17
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3044/html?lang=en
Scroll to top button