Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
-
Ian J. Schwerdt
, Casey G. Hawkins , Bryan Taylor , Alexandria Brenkmann , Sean Martinson und Luther W. McDonald IV
Abstract
Many commercial processes exist for converting uranium from ore to the desired uranium compound for use in nuclear power or nuclear weapons. Accurately determining the processing history of the uranium ore concentrates (UOCs) and their calcination products, can greatly aid a nuclear forensics investigation of unknown or interdicted nuclear materials. In this study, two novel forensic signatures, based on nuclear materials synthesis, were pursued. Thermogravimetric analysis – mass spectrometry (TGA-MS) was utilized for its ability to discern UOCs based on mass changes and evolved gas species; while scanning electron microscopy (SEM), in conjunction with particle segmentation, was performed to identify microfeatures present in the calcination and reduction products (i.e. UO3, U3O8, and UO2) that are unique to the starting UOC. In total, five UOCs from common commercial processing routes including: ammonium diuranate (ADU), uranyl peroxide (UO4), sodium diuranate (SDU), uranyl hydroxide (UH), and ammonium uranyl carbonate (AUC), were synthesized from uranyl nitrate solutions. Samples of these materials were calcined in air at 400 °C and 800 °C. The 800 °C calcination product was subsequently reduced with hydrogen gas at 510 °C. The starting UOCs were investigated using TGA-MS; while SEM quantitative morphological analysis was used to identify signatures in the calcination products. Powder X-ray diffractometry (p-XRD) was used to identify the composition of each UOC and the subsequent calcination products. TGA-MS of the starting UOCs indicate temperature-dependent dehydration, volatilization, and reduction events that were unique to each material; thus making this a quantifiable signature of the initial material in the processing history. In addition, p-XRD, in conjunction with quantitative morphological analysis, was capable of discriminating calcination products of each processing history at the 99 % confidence level. Quantifying these nuclear material properties, enables nuclear forensics scientists to better identify the origin of unknown or interdicted nuclear materials.
Funding source: U.S. Department of Homeland Security
Award Identifier / Grant number: 2015-DN-077-ARI092
Funding source: Defense Threat Reduction Agency
Award Identifier / Grant number: HDTRA1-16-1-0026
Funding statement: This synthesis of the ADU, AUC, and their calcination products, along with their subsequent characterization by p-XRD, SEM, TGA-MS, and DSC were supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under Grant Award no. 2015-DN-077-ARI092, Funder Id: http://dx.doi.org/10.13039/100000180. The synthesis of SDU, and UH along with their calcination products and subsequent characterization were supported by the Defense Threat Reduction Agency, under Grant Award no. HDTRA1-16-1-0026, Funder Id: http://dx.doi.org/10.13039/100000774. The U.S. Army Advanced Civil Schooling Program provided the funding for Major Bryan Taylor. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security or Defense Threat Reduction Agency.
Acknowledgment
This work made use of University of Utah Shared facilities of the Surface Analysis and Nanoscale Imaging Group sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Re-search, and the Utah Science Technology and Research (USTAR) Initiative of the State of Utah. This work made use of the Materials Characterization Lab at the University of Utah.
References
1. Moody, K. J., Grant, P. M., Hutcheon, I. D.: Nuclear Forensic Analysis. 2nd, (2015).Suche in Google Scholar
2. Cordfunke, E. H. P., Van Der Giessen, A. A.: Pseudomorphic decomposition of uranium peroxide into UO3. J. Inorg. Nucl. Chem. 25, 553 (1963).10.1016/0022-1902(63)80240-7Suche in Google Scholar
3. Tamasi, A. L., Cash, L. J., Tyler Mullen, W., Ross, A. R., Ruggiero, C. E., Scott, B. L., Wagner, G. L., Walensky, J. R., Zerkle, S. A., Wilkerson, M. P.: Comparison of morphologies of a uranyl peroxide precursor and calcination products. J. Radioanal. Nucl. Chem. 309(2), 827 (2016).10.1007/s10967-016-4692-xSuche in Google Scholar
4. Yi-Ming, P., Che-Bao, M., Nien-Nan, H.: The conversion of UO2 via ammonium uranyl carbonate: Study of precipitation, chemical variation and powder properties. J. Nucl. Mater. 99, 135 (1981).10.1016/0022-3115(81)90182-3Suche in Google Scholar
5. Doi, H., Ito, T.: Significance of physical state of starting precipitate in growth of uranium dioxide particles. J. Nucl. Mater. 11, 94 (1964).10.1016/0022-3115(64)90124-2Suche in Google Scholar
6. Cordfunke, E. H. P., van der Giessen, A. A.: Particle properties and sintering behaviour of uranium dioxide. J. Nucl. Mater. 24, 141 (1967).10.1016/0022-3115(67)90002-5Suche in Google Scholar
7. Wang, L., Zhao, R., Wang, C. Z., Yuan, L. Y., Gu, Z. J., Xiao, C. L., Wang, S. A., Wang, X. W., Zhao, Y. L., Chai, Z. F.: Template-free synthesis and mechanistic study of porous three-dimensional hierarchical uranium-containing and uranium oxide microspheres. Chem Eur. J. 20, 12655 (2014).10.1002/chem.201403724Suche in Google Scholar
8. Zhao, R., Wang, L., Chai, Z.-F., Shi, W.-Q.: Synthesis of ordered mesoporous uranium dioxide by a nanocasting route. Radiochim. Acta 104, 549 (2016).10.1515/ract-2015-2563Suche in Google Scholar
9. Zhao, R., Wang, L., Gu, Z.-J., Yuan, L.-Y., Xiao, C.-L., Zhao, Y.-L., Chai, Z.-F., Shi, W.-Q.: A facile additive-free method for tunable fabrication of UO 2 and U 3 O 8 nanoparticles in aqueous solution. CrystEngComm 16, 2645 (2014).10.1039/c3ce42140fSuche in Google Scholar
10. Edwards, C. R., Oliver, A. J.: Uranium processing: A review of current methods and technology. JOM 52, 12 (2000).10.1007/s11837-000-0181-2Suche in Google Scholar
11. Agency, I. A. E.: Uranium Extraction Technology. IAEA Technical Report Series (1993).Suche in Google Scholar
12. Gupta, C., Singh, H.: Uranium Resource Processing: Secondary Resources. (2003).Suche in Google Scholar
13. Cordfunke, E. H. P.: The chemistry of uranium: Including its applications in nuclear technology. (1970).Suche in Google Scholar
14. Cordfunke, E. H. P.: On the uranates of ammonium – I: The ternary system NH3 UO3 H2O. J. Inorg. Nucl. Chem. 24, 303 (1962).10.1016/0022-1902(62)80184-5Suche in Google Scholar
15. Wamser, C., Belle, J., Bernsohn, E., Williamson, B.: The Constitution of the Uranates of Sodium1. J. Am. Chem. Soc. 74, 1020 (1952).10.1021/ja01124a043Suche in Google Scholar
16. Krishnan, V., Visweswaraih, M., Shringarpure, P., Koppiker, K.: Studies on the preparation and characterisation of ammonium uranyl carbonate (AUC). Proceedings of the International Symposium on Uranium Technology 2, (1989).Suche in Google Scholar
17. Litz, J., Coleman, R.: A review of United States yellow cake precipitation practice. Production of Yellow Cake and Uranium Fluorides 101 (1979).Suche in Google Scholar
18. Rodgers, C.: Converting the Key Lake mill process for McArthur River ore. Uranium 2000: international symposium on the process metallurgy of uranium (2000).Suche in Google Scholar
19. Clayton, J., Aronson, S.: Some preparative methods and physical characteristics of uranium dioxide powders. J. Chem. Eng. Data 6, 43 (1961).10.1021/je60009a013Suche in Google Scholar
20. Pijolat, M., Brun, C., Valdivieso, F., Soustelle, M.: Reduction of uranium oxide U3O8 to UO2 by hydrogen. Solid State Ionics 101, 931 (1997).10.1016/S0167-2738(97)00385-8Suche in Google Scholar
21. Hausen, D. M.: Characterizing and classifying uranium yellow cakes: a background. JOM 50, 45 (1998).10.1007/s11837-998-0307-5Suche in Google Scholar
22. Sato, T.: Preparation of uranium peroxide hydrates. J. Appl. Chem. 13, 361 (1963).10.1002/jctb.5010130807Suche in Google Scholar
23. Kim, E. H., Choi, C. S., Park, J. H., Kwon, S. G., Chang, I. S.: A study on morphology and chemical composition of precipitates produced from UO2 (NO3) 2-(NH4) 2CO3 solution. J. Nucl. Mater. 209, 301 (1994).10.1016/0022-3115(94)90267-4Suche in Google Scholar
24. Thiry, J., Issa, A.: Recent process developments at the SOMAIRE uranium mill. Uranium 2000: International symposium on the process metallurgy of uranium (2000).Suche in Google Scholar
25. Thiry, J., Roche, M.: Recent process developments at the COMINAK uranium mill. Uranium 2000: International symposium on the process metallurgy of uranium (2000).Suche in Google Scholar
26. Hellmiss, G. Thermal analysis methods in forensic science. In: Forensic Science Progress, Springer (1988), p. 1.10.1007/978-3-642-69403-5_1Suche in Google Scholar
27. Ihms, E. C., Brinkman, D.: Thermogravimetric analysis as a polymer identification technique in forensic applications. J. Forensic Sci. 49, JFS2003252 (2004).10.1520/JFS2003252Suche in Google Scholar
28. Kumar, R., Sharma, V., Verma, N., Diwan, P. K., Kumar, V., Kumar, V.: Analysis of writing/printing paper via Thermogravimetric Analysis: application in forensic science. Aus. J. Forensic Sci. 1 (2017).10.1080/00450618.2017.1310921Suche in Google Scholar
29. Causin, V., Marega, C., Marigo, A., Carresi, P., Della Guardia, V., Schiavone, S.: A method based on thermogravimetry/differential scanning calorimetry for the forensic differentiation of latex gloves. Forensic Sci. Int. 188, 57 (2009).10.1016/j.forsciint.2009.03.014Suche in Google Scholar PubMed
30. Plaue, J. Forensic Signatures of Chemical Process History in Uranium Oxides: University of Nevada, Las Vegas (2013).Suche in Google Scholar
31. Raje, N., Ghonge, D. K., Rao, G. H., Reddy, A.: Impurity characterization of magnesium diuranate using simultaneous TG–DTA–FTIR measurements. J. Nucl. Mater. 436, 40 (2013).10.1016/j.jnucmat.2013.01.289Suche in Google Scholar
32. Raje, N., Manna, S., Ghonge, D. K., Roy, S., Reddy, A.: Impurity characterization and thermal decomposition mechanism of ammonium diuranate during in-situ synthesis of U3O8 using simultaneous TG–DTA–FTIR and PXRD measurements. J. Anal. Appl. Pyrolysis 109, 21 (2014).10.1016/j.jaap.2014.07.017Suche in Google Scholar
33. Ditcham, T. G., Wotherspoon, A., Kirkbride, K. P., Lenehan, C. E., Popelka-Filcoff, R. S.: Thermal decomposition of Australian uranium ore concentrates: characterisation of speciation and morphological changes following thermogravimetric analysis. J. Radioanal. Nucl. Chem. 310, 725 (2016).10.1007/s10967-016-4871-9Suche in Google Scholar
34. Keegan, E., Kristo, M. J., Colella, M., Robel, M., Williams, R., Lindvall, R., Eppich, G., Roberts, S., Borg, L., Gaffney, A., Plaue, J., Wong, H., Davis, J., Loi, E., Reinhard, M., Hutcheon, I.: Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci. Int. 240, 111 (2014).10.1016/j.forsciint.2014.04.004Suche in Google Scholar
35. Tamasi, A. L., Cash, L. J., Mullen, W. T., Pugmire, A. L., Ross, A. R., Ruggiero, C. E., Scott, B. L., Wagner, G. L., Walensky, J. R., Wilkerson, M. P.: Morphology of U3O8 materials following storage under controlled conditions of temperature and relative humidity. J. Radioanal. Nucl. Chem. 311, 35 (2017).10.1007/s10967-016-4923-1Suche in Google Scholar
36. Kim, K. W., Hyun, J. T., Lee, K. Y., Lee, E. H., Lee, K. W., Song, K. C., Moon, J. K.: Effects of the different conditions of uranyl and hydrogen peroxide solutions on the behavior of the uranium peroxide precipitation. J. Hazard Mater. 193, 52 (2011).10.1016/j.jhazmat.2011.07.032Suche in Google Scholar PubMed
37. Manna, S., Karthik, P., Mukherjee, A., Banerjee, J., Roy, S. B., Joshi, J. B.: Study of calcinations of ammonium diuranate at different temperatures. J. Nucl. Mater. 426, 229 (2012).10.1016/j.jnucmat.2012.03.035Suche in Google Scholar
38. Manna, S., Thakkar, U. R., Satpati, S. K., Roy, S. B., Joshi, J. B., Chakravartty, J. K.: Study of crystal growth and effect of temperature and mixing on properties of sodium diuranate. Prog. Nucl. Energy 91, 132 (2016).10.1016/j.pnucene.2016.03.014Suche in Google Scholar
39. Tel, H., Eral, M.: Investigation of production conditions and powder properties of AUC. J. Nucl. Mater. 231, 165 (1996).10.1016/0022-3115(96)00354-6Suche in Google Scholar
40. Thomas, R., Rivenet, M., Berrier, E., de Waele, I., Arab, M., Amaraggi, D., Morel, B., Abraham, F.: Thermal decomposition of (UO2)O2(H2O)2·2H2O: Influence on structure, microstructure and hydrofluorination. J. Nucl. Mater. 483, 149 (2017).10.1016/j.jnucmat.2016.11.009Suche in Google Scholar
41. Olsen, A. M., Richards, B., Schwerdt, I., Heffernan, S., Lusk, R., Smith, B., Jurrus, E., Ruggiero, C., McDonald, L. W.: Quantifying morphological features of α-U3O8 with image analysis for nuclear forensics. Anal. Chem. 89, 3177 (2017).10.1021/acs.analchem.6b05020Suche in Google Scholar PubMed
42. Schwerdt, I. J., Brenkmann, A., Martinson, S., Albrecht, B. D., Heffernan, S., Klosterman, M. R., Kirkham, T., Tasdizen, T., McDonald IV, L. W.: Nuclear proliferomics: a new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO 3. Talanta 186, 433 (2018).10.1016/j.talanta.2018.04.092Suche in Google Scholar
43. Schwerdt, I. J., Olsen, A., Lusk, R., Heffernan, S., Klosterman, M., Collins, B., Martinson, S., Kirkham, T., McDonald, L. W.: Nuclear forensics investigation of morphological signatures in the thermal decomposition of uranyl peroxide. Talanta 176, 284 (2018).10.1016/j.talanta.2017.08.020Suche in Google Scholar PubMed
44. Aurelian, F., Georgescu, D., Serban, N., Panturu, E.: Improvement of uranium extraction during uranium concentrate purification. Uranium 2000: International symposium on the process metallurgy of uranium (2000).Suche in Google Scholar
45. Chang, I., Hwang, S., Park, J.: Status of uranium refining and conversion process technology in Korea (1987).Suche in Google Scholar
46. Rowson, J., Nguyen, T. Case studies of the chemical precipitation processes at the cluff mining uranium mill. In: Crystallization and Precipitation, Elsevier (1987). p. 167.10.1016/B978-0-08-035751-5.50028-3Suche in Google Scholar
47. Shabbir, M.: Operating experience of a pilot plant for the production of uranium dioxide from uranium ore concentrate (1987).Suche in Google Scholar
48. Mellah, A., Chegrouche, S., Barkat, M.: The precipitation of ammonium uranyl carbonate (AUC): thermodynamic and kinetic investigations. Hydrometallurgy 85, 163 (2007).10.1016/j.hydromet.2006.08.011Suche in Google Scholar
49. Vercellone, J.: Development of a technology to make UO 2 starting from “’yellowcake” refined with amines in a sulphuric environment (1987).Suche in Google Scholar
50. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G.: The highscore suite. Powder Diffraction 29, S13 (2014).10.1017/S0885715614000840Suche in Google Scholar
51. ICDD: PDF-2 database release 2008. International Centre for Diffraction Data (ICDD) (2008).Suche in Google Scholar
52. Ruggiero, C., Bloch, J. J.: Morphological Analysis for Material Attribution (MAMA) (2016).Suche in Google Scholar
53. Inc., S. I.: JMP Pro Version 13.1.0 (2016).Suche in Google Scholar
54. Manna, S., Kumar, R., Satpati, S. K., Roy, S. B., Joshi, J. B.: Study of the changes in composition of ammonium diuranate with progress of precipitation, and study of the properties of ammonium diuranate and its subsequent products produced from both uranyl nitrate and uranyl fluoride solutions. Nucl. Eng. Technol. 49, 541 (2017).10.1016/j.net.2016.09.005Suche in Google Scholar
55. Paik, S., Biswas, S., Bhattacharya, S., Roy, S.: Effect of ammonium nitrate on precipitation of ammonium di-uranate (ADU) and its characteristics. J. Nucl. Mater. 440, 34 (2013).10.1016/j.jnucmat.2013.04.011Suche in Google Scholar
56. Eloirdi, R., Lin, D. H. M., Mayer, K., Caciuffo, R., Fanghänel, T.: Investigation of ammonium diuranate calcination with high-temperature X-ray diffraction. J. Mater. Sci. 49, 8436 (2014).10.1007/s10853-014-8553-0Suche in Google Scholar
57. Sato, T., Shiota, S.: Thermal decomposition of ammonium uranates. J. Therm. Anal. Calorim. 30, 107 (1985).10.1007/BF02128120Suche in Google Scholar
58. Cordfunke, E., Loopstra, B.: Sodium uranates: preparation and thermochemical properties. J. Inorg. Nucl. Chem. 33, 2427 (1971).10.1016/0022-1902(71)80217-8Suche in Google Scholar
59. Hälldahl, L., Nygren, M.: Thermal analysis studies of the reactions occurring during the decomposition of ammonium uranyl carbonate in different atmospheres. J. Nucl. Mater. 138, 99 (1986).10.1016/0022-3115(86)90260-6Suche in Google Scholar
60. Finch, R. J., Hawthorne, F. C., Ewing, R. C.: Structural relations among schoepite, metaschoepite and “dehydrated schoepite”. Can. Mineral. 36, 831 (1998).Suche in Google Scholar
61. Hoekstra, H. R., Katz, J. J.: Studies on the alkaline earth diuranates. J. Am. Chem. Soc. 74, 1683 (1952).10.1021/ja01127a022Suche in Google Scholar
62. Manna, S., Roy, S. B., Joshi, J. B.: Study of crystallization and morphology of ammonium diuranate and uranium oxide. J. Nucl. Mater. 424, 94 (2012).10.1016/j.jnucmat.2012.02.012Suche in Google Scholar
63. Kim, E., Park, J., Park, J., Chang, I., Choi, C., Kim, S.: Thermal decomposition kinetics of ammonium uranyl carbonate. J. Nucl. Mater. 209, 294 (1994).10.1016/0022-3115(94)90266-6Suche in Google Scholar
64. Marajofsky, A., Perez, L., Celora, J.: On the dependence of characteristics of powders on the AUC process parameters. J. Nucl. Mater. 178, 143 (1991).10.1016/0022-3115(91)90379-LSuche in Google Scholar
65. Ruggiero, C. E., Porter, R. B.: MAMA Software Features: Quantified Attributes (2014).10.2172/1132547Suche in Google Scholar
66. Tukey, J. W.: The problem of multiple comparisons. Multiple Comparisons (1953).Suche in Google Scholar
67. Kramer, C. Y.: Extension of multiple range test to group correlated adjusted means. Biometrics 13, (1957).10.2307/3001898Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3033).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects
Artikel in diesem Heft
- Frontmatter
- Uranium oxide synthetic pathway discernment through thermal decomposition and morphological analysis
- Applications of the uranium’s set of isotopes for nuclear dating: the Monte-Carlo method
- Quantification of trace level rare earth elements in Al matrices by ICP-MS
- Synergistic effect of vermiculite clay and ionizing irradiation on the physical and mechanical properties of polybutadiene rubber/ethylene propylene diene monomer nanocomposite
- Development of a novel 68Ga-dextran carboxylate derivative for blood pool imaging
- Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment
- Investigation of γ ray shielding, structural and dissolution rate studies of alkali based bismuth borate glass systems with MoO3 added
- Novel radiochromic porphyrin-based film dosimeters for γ ray dosimetry: investigation on metal and ligand effects