Startseite Naturwissenschaften Irradiated rubber composite with nano and micro fillers for mining rock application
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Irradiated rubber composite with nano and micro fillers for mining rock application

  • Hanan M. Eyssa EMAIL logo , Wael S. Mohamed und Mai M. El-Zayat
Veröffentlicht/Copyright: 13. Februar 2019

Abstract

In this work, nanosilica and micro carbon black (CB) as a fillers were used to improve the properties of styrene butadiene rubber/natural rubber blends (SBR/NR) crosslinked by γ radiation. Nanosilica was prepared from silica sand and used as eco-friendly material. These composites were characterized by field emission scanning electron microscopy (FESEM) and the measurements of the physic-mechanical and thermal properties were measured. Field emission scanning electron microscopy showed that the composites reinforced by nanosilica and the measurements of the CB are uniformly dispersed in the blends matrix. The results showed that the physico-mechanical and thermal properties were improved indicating a good interaction between the fillers and rubber matrix. The volume fraction measurements confirmed the formation of crosslinking network structure. Meanwhile, the reinforcement of SBR/NR blend loaded with nanosilica showed improved mechanical than blend loaded with both the nanosilica/carbon black and the CB alone. The highest enhancement was obtained for the three fillers by using a concentration of 35 phr at a dose of 150 kGy of γ-irradiation. Thermogravimetric analysis (TGA) indicated that the thermal stability of SBR/NR blend reinforced by nanosilica is higher than those blends reinforced with combined filler the silica. It was also found that the irradiated SBR/NR nanocomposites were more stable than the un-irradiated ones.

  1. Conflict of interest: The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

References

1. Adhikari, B., Ghosh, A. K., Maiti, S.: Developments in carbon black for rubber reinforcement. J. Polym. Mater. 17, 101 (2000).Suche in Google Scholar

2. Maiti, M., Bhattacharya, M., Bhowmick, A. K.: Elastomer nanocomposites. Rubber Chem. Technol. J. 81, 384 (2008).10.5254/1.3548215Suche in Google Scholar

3. Brinke, J. W. T., Debnath, S. C., Reuvekamp, L. A. E. M., Noordermeer, J. W. M.: Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos. Sci. Technol. 63(8), 1165 (2003).10.1016/S0266-3538(03)00077-0Suche in Google Scholar

4. Arroyo, M., Lopez-Manchadoa, M. A., Valentina, J. L., Carretero, J.: Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos. Sci. Technol. 67(7–8), 1330 (2007).10.1016/j.compscitech.2006.09.019Suche in Google Scholar

5. Gunasekaran, S., Natarajan, R. K., Kala, A.: FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim. Acta 68(2), 323 (2007).10.1016/j.saa.2006.11.039Suche in Google Scholar

6. Stelandre, L. L., Bomal, Y., Flandin, L., Labarre, D.: Dynamic mechanical properties of precipitated silica filled rubber: influence of morphology and coupling agent. Rubber Chem. Technol. J. 76, 145 (2003).10.5254/1.3547730Suche in Google Scholar

7. Pal, K., Pal, S. K., Das, C. K., Kim, J. K.: Effect of fillers on morphological and wear characteristics of NR/HSR blends with E-glass fiber. Mater. Design 35, 863 (2012).10.1016/j.matdes.2011.07.074Suche in Google Scholar

8. Tinker, A. J., Jones, K. P.: Blends of Natural Rubber. Novel Techniques for Blending with Speciality Polymer (1998). Chapman and Hall, London.10.1007/978-94-011-4922-8Suche in Google Scholar

9. Hui, S., Chaki, T. K., Chattopadhyay, S.: Effect of silica-based nanofillers on the properties of a low-density polyethylene/ethylene vinyl acetate copolymer based thermoplastic elastomer. J. Appl. Polym. Sci. 110, 825 (2008).10.1002/app.28537Suche in Google Scholar

10. Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Das, C. K., Kim, J. K.: Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica: morphology and wear. Mater. Design 31, 1156 (2013).10.1016/j.matdes.2009.09.037Suche in Google Scholar

11. Nasir, M., Choo, C. H.: Cure characteristics and mechanical properties of carbon black filled styrene-butadiene rubber and epoxidized natural rubber blends. Europ. Polym. J. 25, 355 (1989).10.1016/0014-3057(89)90149-3Suche in Google Scholar

12. Job, K.: Trends in green tire manufacturing. Rubber World 249(6), 328 (2014).Suche in Google Scholar

13. Yatsuyanagi, F., Suzuki, N., Ito, M., Kaidou, H.: Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 42(23), 9523 (2001).10.1016/S0032-3861(01)00472-4Suche in Google Scholar

14. Pan, Q. W., Wang, B. B., Chen, Z. H., Zhao, J. Q.: Reinforcement and antioxidation effects of antioxidant functionalized silica in styrene-butadiene rubber. Mater. Design 50, 558 (2013).10.1016/j.matdes.2013.03.050Suche in Google Scholar

15. Manshaie, R., Khorasani, S. N., Veshare, S. J., Abadchi, M. R.: Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. J. Radiat. Phys. Chem. 80, 100 (2011).10.1016/j.radphyschem.2010.08.015Suche in Google Scholar

16. Chowdhury, R., Banerji, M. S.: Electron beam irradiation of ethylene-propylene terpolymer: evaluation of trimethylol propane trimethacrylate as a crosslink promoter. J. Appl. Polym. Sci. 97, 968 (2005).10.1002/app.21795Suche in Google Scholar

17. El-Nemr, K. F., Mohamed, R. M.: Sorbic acid as friendly curing agent for enhanced properties of ethylene propylene diene monomer rubber using gamma radiation. J. Macromole. Sci. A 54, 1 (2017).10.1080/10601325.2017.1322469Suche in Google Scholar

18. Charlesby, A.: Comparative Effects of Radiation (1960), John Wiley & Sons, Inc, New York, p. 24.Suche in Google Scholar

19. Midhun Dominic, C. D., Sabura Begum, P. M., Joseph, R., Joseph, D., Kumar, P., Ayswarya, E. P.: Synthesis and characterization and applications of rice husk nano silica in natural rubber. Int. J. Sci. Environ. Technol. 2(5), 1027 (2013).Suche in Google Scholar

20. Moosa, A. A., Saddam, B. F.: Synthesis and characterization of nanosilica from rice husk with applications to polymer composites. Am. J. Mater. Sci. 7(6), 223 (2017).Suche in Google Scholar

21. Terkula, I. D., Wuana, R. A., Iorungwa, M. S.: Preparation and characterization of ‘green’ nano silica from rice husks. Chem. Mater. Res. 9(6), 1 (2017).Suche in Google Scholar

22. Rajkumar, K., Ranjan, P., Thavamani, P., Jeyanthiand, P., Pazhanisamy, P.: Dispersion studied of nanosilica in NBR based polymer nanocomposite. Rasayan J. Chem. 6(2), 122 (2013).Suche in Google Scholar

23. Hassan, M. M., Badway, N. A., Elnaggar, M. Y., Hegazy, S. A.: Effects of peroxide and gamma radiation on properties of devulcanized rubber/polypropylene/ethylene propylene diene monomer formulation. J. Appl. Polym. Sci. 131, 40611 (2014).10.1002/app.40611Suche in Google Scholar

24. Farshid, G., Ali, M. S., Maryam, M.: Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environm. Stud. Pers. Gulf 2(1), 56 (2015).Suche in Google Scholar

25. Majid, M., Masoud, R., Mohammad, H. A., Vahid, M.: Synthesis and Characterization of Nano SiO2 from Rice Husk Ash by Precipitation Method. 3rd National Conference on Modern Researches in Chemistry and Chemical Engineering, Mahshahr, Islamic Azad University of Mahshahr, Iran, 2011 (2014).Suche in Google Scholar

26. El-Nemr, K. F., El-Naggar, M. Y., Fathy, E. S.: Waste ceramic dust activated by gamma radiation and coupling agents as reinforcement for nitrile rubber. J. Vinyl Addit. Techn. 24, 37 (2018).10.1002/vnl.21515Suche in Google Scholar

27. Wolff, S.: Chemical aspects of rubber reinforcement by fillers. Rubb. Chem. Technol. J. 69(3), 325 (1996).10.5254/1.3538376Suche in Google Scholar

28. Kaewsakul, W., Sahakaro, K., Dierkes, W. K., Noordermee, J. W. M.: Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. J. Polym. Eng. Sci. 55(4), 836 (2015).10.1002/pen.23949Suche in Google Scholar

29. Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J. M.: Polyethylene/ground tyre rubber blends: influence of particle morphology and oxidation on mechanical properties. J. Polym. Test 26, 274 (2007).10.1016/j.polymertesting.2006.10.011Suche in Google Scholar

30. Scagliusi, R. S., Cardoso, L. C. E., Lugao, A. B.: Effect of gamma radiation on chlorobutyl rubber vulcanized by three different crosslinking systems. Radiat. Phys. Chem. 81(9), 1370 (2012).10.1016/j.radphyschem.2012.01.037Suche in Google Scholar

31. Leblanc, J. L.: Rubber-filler interactions and rheological properties in filled compounds. J. Prog. Polym. Sci. 27, 677 (2002).10.1016/S0079-6700(01)00040-5Suche in Google Scholar

32. Stockelhuber, K. W., Svistkov, A. S., Pelevin, A. G., Heinrich, G.: Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44, 4366 (2011).10.1021/ma1026077Suche in Google Scholar

33. Atif, M., Bongiovanni, R., Giorcelli, M., Celasco, E., Tagliaferro, A.: Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation. J. Appl. Surf. Sci. 286, 149 (2013).10.1016/j.apsusc.2013.09.038Suche in Google Scholar

34. Ozmusul, M. S., Picu, C. R., Sternstein, S. S., Kumar, S. K.: Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules 38, 4495 (2005).10.1021/ma0474731Suche in Google Scholar

35. Sae-Oui, P., Rakdee, C., Thanmathorn, P. J.: Use of rice husk ash as filler in natural rubber vulcanizates: In comparison with other commercial fillers. Appl. Polym. Sci. 83, 2485 (2002).10.1002/app.10249Suche in Google Scholar

36. Likozar, B., Major, Z.: Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitril rubber/multi-walled carbon nanotubes composites prepared by melt compounding: the effect of acrylonitrile content and hydrogenation. J. Appl. Surf. Sci. 257, 565 (2010).10.1016/j.apsusc.2010.07.034Suche in Google Scholar

37. Fritsch, J., Kluppel, M.: Structural dynamics and interfacial properties of filler-reinforced elastomers. J. Phys. Condens. Matter. 23, 1 (2011).10.1088/0953-8984/23/3/035104Suche in Google Scholar

38. Zhao, G., Shi, L., Zhang, D., Feng, X., Yuan, S., Zhuo, J.: Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater. Design 35, 847 (2012).10.1016/j.matdes.2011.05.056Suche in Google Scholar

39. Persello, J.: Designing nano structured particular fillers for elastomers. Role of nanostructure and polymer filler interactions in rubber reinforcement, E-MRS Spring Meeting, Strasbourg., France, 2002, p. 8.Suche in Google Scholar

40. Vishvanathperumal, S., Gopalakannan, S.: Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polym. Korea 41(3), 433 (2017).10.7317/pk.2017.41.3.433Suche in Google Scholar

41. Jacques, J. E.: Rubber compounding, rubber technology and manufacture, 2nd ed. In: C. M. Blow, C. Hepburn (Eds.), Rubber Technology (1985), Butterworths, UK, p. 386.Suche in Google Scholar

42. Durandish, M., Alipour, A.: Investigation morphology, microstructure, and properties of SBR/EPDM/organomontmorillonite nanocomposites. J. Chin. Polym. Sci. 31(4), 660 (2013).10.1007/s10118-013-1262-3Suche in Google Scholar

43. Sulkowski, W. W., Danch, A., Moczynski, M., Radon, A., Sulkowska, A., Borek, J.: Thermogravimetric study of rubber waste-polyurethane composites. J. Therm. Anal. Calorim. 78(3), 905 (2004).10.1007/s10973-005-0457-0Suche in Google Scholar

44. Shih, Y. F., Jeng, R. J.: Carbon black-containing interpenetrating polymer networks based on unsaturated polyester/epoxyII. Thermal degradation behavior and kinetic analysis. Polym. Degrad. Stab. 77, 67 (2002).10.1016/S0141-3910(02)00080-0Suche in Google Scholar

45. Jankovi, B., Cincovi, M. M., Jovanovi, V., Samar, S., Jovanovi, S. S., Markovi, G.: The comparative kinetic analysis of non-isothermal degradation process of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black/silica fillers. Part II. Thermochim. Acta 543, 304 (2012).10.1016/j.tca.2012.05.028Suche in Google Scholar

46. Maiti, M., Khatua, B. B., Das, C. K.: Effect of processing on the thermal stability of the blends based on polyurethane: part IV. Polym. Degrad. Stab. 72(3), 499 (2000).10.1016/S0141-3910(01)00050-7Suche in Google Scholar

47. Gann, R. G., Dipert, R. A., Drews, M. J.: Flammability. In: J. I. Kroschwitz (Ed.), Encyclopedia of Polymer Science and Engineering (1985), 2nd ed., vol. 7, John Wiley & Sons, Inc., New York, p. 154.Suche in Google Scholar

Received: 2018-05-19
Accepted: 2019-01-14
Published Online: 2019-02-13
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-2989/html
Button zum nach oben scrollen