Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
-
Francesco Endrizzi
, Xavier Gaona
, Zhicheng Zhang
Abstract
The solubility and hydrolysis of U(VI) were investigated in 0.10–5.6 m NaCl solutions with 4 ≤ pHm ≤ 14.3 (pHm = −log [H+]) at T = 25, 55 and 80 °C. Batch experiments were conducted under Ar atmosphere in the absence of carbonate. Solubility was studied from undersaturation conditions using UO3 · 2H2O(cr) and Na2U2O7 · H2O(cr) solid phases, equilibrated in acidic (4 ≤ pHm ≤ 6) and alkaline (8.2 ≤ pHm ≤ 14.3) NaCl solutions, respectively. Solid phases were previously tempered in solution at T = 80 °C to avoid changes in the crystallinity of the solid phase in the course of the solubility experiments. Starting materials and solid phases isolated at the end of the solubility experiments were characterized by powder XRD, SEM-EDS, TRLFS and quantitative chemical analysis. The enthalpy of dissolution of Na2U2O7 · H2O(cr) at 25–80 °C was measured independently by means of solution-drop calorimetry. Solid phase characterization indicates the transformation of UO3 · 2H2O(cr) into a sodium uranate-like phase with a molar ratio Na:U ≈ 0.4–0.5 in acidic solutions with [NaCl] ≥ 0.51 m at T = 80 °C. In contrast, Na2U2O7 · H2O(cr) equilibrated in alkaline NaCl solutions remains unaltered within the investigated pHm, NaCl concentration and temperature range. The solubility of Na2U2O7 · H2O(cr) in the alkaline pHm-range is noticeably enhanced at T = 55 and 80 °C relative to T = 25 °C. Combined results from solubility and calorimetric experiments indicate that this effect results from the increased acidity of water at elevated temperature, together with an enhanced hydrolysis of U(VI) and a minor contribution due to a decreased stability of Na2U2O7 · H2O(cr) under these experimental conditions. A thermodynamic model describing the solubility and hydrolysis equilibria of U(VI) in alkaline solutions at T = 25–80 °C is developed, including
Acknowledgments
The authors would like to thank F. Geyer, C. Walschburger, M. Böttle, S. Heck, S. Moisei-Rabung, T. Kisely and E. Soballa (KIT–INE) for their lab assistance and ICP–MS, ICP–OES, TG–DTA, TOC and SEM–EDS analyses. This work was partially funded by the German Federal Ministry for Education and Research (BMBF). KIT–INE is working in ThermAc under the contract 02NUK039A. The calorimetric experiments were supported by the Director, Office of Science, Office of Basic Energy Science of the US Department of Energy, under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.
References
1. Wronkiewicz, D. J., Buck, E. C.: Uranium mineralogy and the geologic disposal of spent nuclear fuel. Rev. Mineral. 38, 475 (1999).10.1515/9781501509193-015Suche in Google Scholar
2. Metz, V., Geckeis, H., Gonzalez-Robles, E., Loida, A., Bube, C., Kienzler, B.: Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel. Radiochim. Acta 100, 699 (2012).10.1524/ract.2012.1967Suche in Google Scholar
3. Torrero, M. E., Casas, I., de Pablo, J., Sandino, M. C. A., Grambow, B.: A comparison between unirradiated UO2(s) and schoepite solubilities in 1 M NaCl medium. Radiochim. Acta 66/67, 29 (1994).10.1524/ract.1994.6667.special-issue.29Suche in Google Scholar
4. Guillamont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. OECD Nuclear Energy Agency, Thermodynamic Data Bank, Issy-les-Moulineaux, France (2003), p. 964.Suche in Google Scholar
5. Altmaier, M., Yalçıntaş, E., Gaona, X., Neck, V., Müller, R., Schlieker, M., Fanghänel, T.: Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn. 114, 2 (2017).10.1016/j.jct.2017.05.039Suche in Google Scholar
6. Çevirim-Papaioannou, N., Yalçıntaş, E., Gaona, X., Dardenne, K., Altmaier, M., Geckeis, H. Redox chemistry of uranium in reducing, dilute to concentrated NaCl solutions. Appl. Geochemistry 98, 286 (2018).10.1016/j.apgeochem.2018.07.006Suche in Google Scholar
7. Cevirim Papaioannou, E., Yalcintas, E., Gaona, X., Altmaier, M., Geckeis, H.: Solubility of U(VI) in chloride solutions. II. The stable oxides/hydroxides in alkaline KCl solutions: thermodynamic description and relevance in cementitious systems. Appl. Geochem. 98, 237 (2018).10.1016/j.apgeochem.2018.09.017Suche in Google Scholar
8. Rao, L., Srinivasan, T. G., Garnov, A. Y., Zanonato, P., Di Plinio, B., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10-85 °C). Geochim. Cosmochim. Acta 68, 4821 (2004).10.1016/j.gca.2004.06.007Suche in Google Scholar
9. Zanonato, P. L., Di Bernardo, P., Bismondo, A., Liu, G., Chen, X., Rao, L.: Hydrolysis of uranium(VI) at variable temperatures (10–85 °C). J. Am. Chem. Soc. 126, 5515 (2004).10.1021/ja0398666Suche in Google Scholar PubMed
10. Zanonato, P. L., Di Bernardo, P., Grenthe, I.: A calorimetric study of the hydrolysis and peroxide complex formation of the uranyl(VI) ion. Dalt. Trans. 43, 2378 (2014).10.1039/C3DT52922CSuche in Google Scholar
11. Zanonato, P. L., Di Bernardo, P., Zhang, Z., Gong, Y., Tian, G., Gibson, J. K., Rao, L.: Hydrolysis of thorium(IV) at variable temperatures. Dalt. Trans. 45, 12763 (2016).10.1039/C6DT01868HSuche in Google Scholar PubMed
12. Hála, J., Miyamoto, H.: IUPAC-NIST Solubility Data Series. 84. Solubility of inorganic actinide compounds. J. Phys. Chem. Ref. Data 36, 1417 (2007).10.1063/1.2741386Suche in Google Scholar
13. Brown, P. L., Ekberg, C.:Hydrolysis of metal ions. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim (2016), p. 917.10.1002/9783527656189Suche in Google Scholar
14. Ciavatta, L.: The specific interaction theory in evaluating ionic equilibriums. Ann. Chim. 70, 551 (1980).Suche in Google Scholar
15. Endrizzi, F., Gaona, X., Marques Fernandes, M., Baeyens, B., Altmaier, M.: Solubility and hydrolysis of U(VI) in 0.5 mol/kg NaCl solutions at T = 22 and 80 °C. J. Chem. Thermodyn. 120, 45 (2018).10.1016/j.jct.2018.01.006Suche in Google Scholar
16. Nikitin, A. A., Sergeeva, E. I., Khodakovskii, I. L., Naumov, G. B.: Hydrolysis of Uranyl in the hydrothermal region. Geokhimiya 3, 297 (1972).Suche in Google Scholar
17. Nikolaeva, N. M., Pirozhkov, A. V.: Determination of the solubility product of uranyl hydroxide at elevated temperatures. Izv. Sib. Otd. Akad. Nauk SSSR, Seriya Khimicheskikh Nauk. 4, 73 (1971).Suche in Google Scholar
18. Lemire, R. J., Tremaine, P. R.: Uranium and plutonium equilibriums in aqueous solutions to 200 °C. J. Chem. Eng. Data. 25, 361 (1980).10.1021/je60087a026Suche in Google Scholar
19. Valsami-Jones, E., Ragnarsdottir, K. V.: Solubility of uranium oxide and calcium uranate in water and Ca(OH)2-bearing solutions. Radiochim. Acta 79, 249 (1997).10.1524/ract.1997.79.4.249Suche in Google Scholar
20. Arocas, P. D., Grambow, B.: Solid-liquid phase equilibria of U(VI) in NaCl solutions. Geochim. Cosmochim. Acta 62, 245 (1998).10.1016/S0016-7037(97)00337-2Suche in Google Scholar
21. Gorman-Lewis, D., Fein, J. B., Burns, P. C., Szymanowski, J. E. S., Converse, J.: Solubility measurements of the uranyl oxide hydrate phases metaschoepite, compreignacite, Na-compreignacite, becquerelite, and clarkeite. J. Chem. Thermodyn. 40, 980 (2008).10.1016/j.jct.2008.02.006Suche in Google Scholar
22. Debets, P. C., Loopstra, B. O.: The uranates of ammonium. II. X-ray investigation of the compounds in the system NH3-UO3-H2O. J. Inorg. Nucl. Chem. 25, 945 (1963).10.1016/0022-1902(63)80027-5Suche in Google Scholar
23. Finch, R. J., Ewing, R. C.: Clarkeite: new chemical and structural data. Am. Mineral. 82, 607 (1997).10.2138/am-1997-5-620Suche in Google Scholar
24. Rabinowitch, E., Belford, R. L.: International Series of Monographs on Nuclear Energy, Chemistry Division. Vol. 1. Spectroscopy and Photochemistry of Uranyl Compounds. New York Macmillan (1964), p. 300.10.1016/B978-0-08-010180-4.50007-XSuche in Google Scholar
25. Gorobets, B. S., Sidorenko, G. A.: Luminescence of secondary uranium minerals at low temperatures. At. Energiya. 36, 6 (1974).10.1007/BF01123095Suche in Google Scholar
26. Parker, V. B.: Thermal Properties of Aqueous Uni-univalent Electrolytes. US National Bureau of Standards (1965), p. 76.10.6028/NBS.NSRDS.2Suche in Google Scholar
27. Kuznetsov, L. M., Tsvigunov, A. N.: Hydrothermal synthesis and physicochemical study of sodium triuranate monohydrate (Na2U3O10.H2O). Radiokhimiya 22, 600 (1980).Suche in Google Scholar
28. Wang, Z., Zachara, J. M., Gassman, P. L., Liu, C., Qafoku, O., Yantasee, W., Catalano, J. G.: Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim. Cosmochim. Acta 69, 1391 (2005).10.1016/j.gca.2004.08.028Suche in Google Scholar
29. Wang, Z., Zachara, J. M., Liu, C., Gassman, P. L., Felmy, A. R., Clark, S. B.: A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals. Radiochim. Acta 96, 591 (2008).10.1524/ract.2008.1541Suche in Google Scholar
30. Gorobets, B. S., Engoyan, S. S., Sidorenko, G. A.: Study of uranium and uranium-containing minerals using luminescence spectra. At. Energiya. 42, 177 (1977).10.1007/BF01121388Suche in Google Scholar
31. Volod’ko, L. V., Komyak, A. I., Sevchenko, A. N., Umreiko, D. S.: Spectral-luminescent study of crystals of uranyl compounds. J. Lumin. 8, 198 (1974).10.1016/0022-2313(74)90055-6Suche in Google Scholar
32. Brittain, H. G., Perry, D. L.: Luminescence spectra of the uranyl ion in two geometrically similar coordination environments. Uranyl nitrate hexahydrate and di-μ-aquo-bis[dioxobis(nitrato)uranium(VI)] diimidazole. J. Phys. Chem. 84, 2630 (1980).10.1021/j100457a031Suche in Google Scholar
33. Baran, V., Tympl, M.: Thermal analysis of sodium uranates. Zeitschrift fuer Anorg. und Allg. Chemie. 347, 184 (1966).10.1002/zaac.19663470311Suche in Google Scholar
34. Cox, J. D., Wagman, D. D., Medvedev, V. A.: CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp. (1989), p. 271.Suche in Google Scholar
35. Merli, L., Fuger, J.: Thermochemistry of a few neptunium and neodymium oxides and hydroxides. Radiochim. Acta 66/67, 109 (1994).10.1524/ract.1994.6667.s1.109Suche in Google Scholar
36. Zanonato, P. L., Di Bernardo, P., Grenthe, I.: Chemical equilibria in the binary and ternary uranyl(VI)-hydroxide-peroxide systems. Dalton. Trans. 41, 3380 (2012).10.1039/C1DT11276GSuche in Google Scholar PubMed
37. Grenthe, I., Puigdomènech, I., Allard, B.: Modelling in Aquatic Chemistry. Nuclear Energy Agency, Organisation for Economic Co-operation and Development 1997.Suche in Google Scholar
38. Pitzer, K. S. ed: Activity coefficients in electrolyte solutions. CRC Press, Boca Raton [u.a.] (1991), p. 542 S.Suche in Google Scholar
39. Puigdomènech, I., Rard, J. A., Plyasunov, A. V., Grenthe, I.: Temperature Corrections to Thermodynamic Data and Enthalpy Calculations., Le Seine-St. Germain 12, Bd. des Îles F-92130 Issy-les-Moulineaux France 1999, p. 1–96.Suche in Google Scholar
40. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics of Uranium. OECD Nuclear Energy Agency, Thermodynamic Data Bank, Issy-les-Moulineaux (France) (1992), p. 715.Suche in Google Scholar
41. Tso, T. C., Brown, D., Judge, A. I., Holloway, J. H., Fuger, J.: Thermodynamics of the actinide elements. Part 6. The preparation and heats of formation of some sodium uranates(VI). J. Chem. Soc. Dalton. Trans. Inorg. Chem. 1853 (1985). https://pubs.rsc.org/en/content/articlelanding/1985/dt/dt9850001853#!divAbstract.10.1039/dt9850001853Suche in Google Scholar
42. Cordfunke, E. H. P., Loopstra, B. O.: Sodium uranates. Preparation and thermochemical properties. J. Inorg. Nucl. Chem. 33, 2427 (1971).10.1016/0022-1902(71)80217-8Suche in Google Scholar
43. Smith, A. L., Colle, J. -Y., Raison, P. E., Beneš, O., Konings, R. J. M.: Thermodynamic investigation of Na2U2O7 using Knudsen effusion mass spectrometry and high temperature X-ray diffraction. J. Chem. Thermodyn. 90, 199 (2015).10.1016/j.jct.2015.06.026Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3056).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
- Polonium-210 in honey samples from southern Poland
- Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
- Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
- Radiation stability of phosphine oxide functionalized pillar[5]arenes
- Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties
- Irradiated rubber composite with nano and micro fillers for mining rock application
- Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases
Artikel in diesem Heft
- Frontmatter
- Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
- Polonium-210 in honey samples from southern Poland
- Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
- Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
- Radiation stability of phosphine oxide functionalized pillar[5]arenes
- Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties
- Irradiated rubber composite with nano and micro fillers for mining rock application
- Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases