Home Physical Sciences Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C

  • Francesco Endrizzi EMAIL logo , Xavier Gaona EMAIL logo , Zhicheng Zhang , Chao Xu , Linfeng Rao , Carmen Garcia-Perez and Marcus Altmaier
Published/Copyright: May 27, 2019

Abstract

The solubility and hydrolysis of U(VI) were investigated in 0.10–5.6 m NaCl solutions with 4 ≤ pHm ≤ 14.3 (pHm = −log [H+]) at T = 25, 55 and 80 °C. Batch experiments were conducted under Ar atmosphere in the absence of carbonate. Solubility was studied from undersaturation conditions using UO3 · 2H2O(cr) and Na2U2O7 · H2O(cr) solid phases, equilibrated in acidic (4 ≤ pHm ≤ 6) and alkaline (8.2 ≤ pHm ≤ 14.3) NaCl solutions, respectively. Solid phases were previously tempered in solution at T = 80 °C to avoid changes in the crystallinity of the solid phase in the course of the solubility experiments. Starting materials and solid phases isolated at the end of the solubility experiments were characterized by powder XRD, SEM-EDS, TRLFS and quantitative chemical analysis. The enthalpy of dissolution of Na2U2O7 · H2O(cr) at 25–80 °C was measured independently by means of solution-drop calorimetry. Solid phase characterization indicates the transformation of UO3 · 2H2O(cr) into a sodium uranate-like phase with a molar ratio Na:U ≈ 0.4–0.5 in acidic solutions with [NaCl] ≥ 0.51 m at T = 80 °C. In contrast, Na2U2O7 · H2O(cr) equilibrated in alkaline NaCl solutions remains unaltered within the investigated pHm, NaCl concentration and temperature range. The solubility of Na2U2O7 · H2O(cr) in the alkaline pHm-range is noticeably enhanced at T = 55 and 80 °C relative to T = 25 °C. Combined results from solubility and calorimetric experiments indicate that this effect results from the increased acidity of water at elevated temperature, together with an enhanced hydrolysis of U(VI) and a minor contribution due to a decreased stability of Na2U2O7 · H2O(cr) under these experimental conditions. A thermodynamic model describing the solubility and hydrolysis equilibria of U(VI) in alkaline solutions at T = 25–80 °C is developed, including log *Ks,0°{Na2U2O7H2O(cr)}, log *β1,4 and related reaction enthalpies. The standard free energy and enthalpy of formation of Na2U2O7 · H2O(cr) calculated from these data are also provided. These data can be implemented in thermodynamic databases and allow accurate solubility and speciation calculations for U(VI) in dilute to concentrated alkaline NaCl solutions in the temperature range T = 25–80 °C.

Acknowledgments

The authors would like to thank F. Geyer, C. Walschburger, M. Böttle, S. Heck, S. Moisei-Rabung, T. Kisely and E. Soballa (KIT–INE) for their lab assistance and ICP–MS, ICP–OES, TG–DTA, TOC and SEM–EDS analyses. This work was partially funded by the German Federal Ministry for Education and Research (BMBF). KIT–INE is working in ThermAc under the contract 02NUK039A. The calorimetric experiments were supported by the Director, Office of Science, Office of Basic Energy Science of the US Department of Energy, under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

References

1. Wronkiewicz, D. J., Buck, E. C.: Uranium mineralogy and the geologic disposal of spent nuclear fuel. Rev. Mineral. 38, 475 (1999).10.1515/9781501509193-015Search in Google Scholar

2. Metz, V., Geckeis, H., Gonzalez-Robles, E., Loida, A., Bube, C., Kienzler, B.: Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel. Radiochim. Acta 100, 699 (2012).10.1524/ract.2012.1967Search in Google Scholar

3. Torrero, M. E., Casas, I., de Pablo, J., Sandino, M. C. A., Grambow, B.: A comparison between unirradiated UO2(s) and schoepite solubilities in 1 M NaCl medium. Radiochim. Acta 66/67, 29 (1994).10.1524/ract.1994.6667.special-issue.29Search in Google Scholar

4. Guillamont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I., Rand, M.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. OECD Nuclear Energy Agency, Thermodynamic Data Bank, Issy-les-Moulineaux, France (2003), p. 964.Search in Google Scholar

5. Altmaier, M., Yalçıntaş, E., Gaona, X., Neck, V., Müller, R., Schlieker, M., Fanghänel, T.: Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn. 114, 2 (2017).10.1016/j.jct.2017.05.039Search in Google Scholar

6. Çevirim-Papaioannou, N., Yalçıntaş, E., Gaona, X., Dardenne, K., Altmaier, M., Geckeis, H. Redox chemistry of uranium in reducing, dilute to concentrated NaCl solutions. Appl. Geochemistry 98, 286 (2018).10.1016/j.apgeochem.2018.07.006Search in Google Scholar

7. Cevirim Papaioannou, E., Yalcintas, E., Gaona, X., Altmaier, M., Geckeis, H.: Solubility of U(VI) in chloride solutions. II. The stable oxides/hydroxides in alkaline KCl solutions: thermodynamic description and relevance in cementitious systems. Appl. Geochem. 98, 237 (2018).10.1016/j.apgeochem.2018.09.017Search in Google Scholar

8. Rao, L., Srinivasan, T. G., Garnov, A. Y., Zanonato, P., Di Plinio, B., Bismondo, A.: Hydrolysis of neptunium(V) at variable temperatures (10-85 °C). Geochim. Cosmochim. Acta 68, 4821 (2004).10.1016/j.gca.2004.06.007Search in Google Scholar

9. Zanonato, P. L., Di Bernardo, P., Bismondo, A., Liu, G., Chen, X., Rao, L.: Hydrolysis of uranium(VI) at variable temperatures (10–85 °C). J. Am. Chem. Soc. 126, 5515 (2004).10.1021/ja0398666Search in Google Scholar PubMed

10. Zanonato, P. L., Di Bernardo, P., Grenthe, I.: A calorimetric study of the hydrolysis and peroxide complex formation of the uranyl(VI) ion. Dalt. Trans. 43, 2378 (2014).10.1039/C3DT52922CSearch in Google Scholar

11. Zanonato, P. L., Di Bernardo, P., Zhang, Z., Gong, Y., Tian, G., Gibson, J. K., Rao, L.: Hydrolysis of thorium(IV) at variable temperatures. Dalt. Trans. 45, 12763 (2016).10.1039/C6DT01868HSearch in Google Scholar PubMed

12. Hála, J., Miyamoto, H.: IUPAC-NIST Solubility Data Series. 84. Solubility of inorganic actinide compounds. J. Phys. Chem. Ref. Data 36, 1417 (2007).10.1063/1.2741386Search in Google Scholar

13. Brown, P. L., Ekberg, C.:Hydrolysis of metal ions. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim (2016), p. 917.10.1002/9783527656189Search in Google Scholar

14. Ciavatta, L.: The specific interaction theory in evaluating ionic equilibriums. Ann. Chim. 70, 551 (1980).Search in Google Scholar

15. Endrizzi, F., Gaona, X., Marques Fernandes, M., Baeyens, B., Altmaier, M.: Solubility and hydrolysis of U(VI) in 0.5 mol/kg NaCl solutions at T = 22 and 80 °C. J. Chem. Thermodyn. 120, 45 (2018).10.1016/j.jct.2018.01.006Search in Google Scholar

16. Nikitin, A. A., Sergeeva, E. I., Khodakovskii, I. L., Naumov, G. B.: Hydrolysis of Uranyl in the hydrothermal region. Geokhimiya 3, 297 (1972).Search in Google Scholar

17. Nikolaeva, N. M., Pirozhkov, A. V.: Determination of the solubility product of uranyl hydroxide at elevated temperatures. Izv. Sib. Otd. Akad. Nauk SSSR, Seriya Khimicheskikh Nauk. 4, 73 (1971).Search in Google Scholar

18. Lemire, R. J., Tremaine, P. R.: Uranium and plutonium equilibriums in aqueous solutions to 200 °C. J. Chem. Eng. Data. 25, 361 (1980).10.1021/je60087a026Search in Google Scholar

19. Valsami-Jones, E., Ragnarsdottir, K. V.: Solubility of uranium oxide and calcium uranate in water and Ca(OH)2-bearing solutions. Radiochim. Acta 79, 249 (1997).10.1524/ract.1997.79.4.249Search in Google Scholar

20. Arocas, P. D., Grambow, B.: Solid-liquid phase equilibria of U(VI) in NaCl solutions. Geochim. Cosmochim. Acta 62, 245 (1998).10.1016/S0016-7037(97)00337-2Search in Google Scholar

21. Gorman-Lewis, D., Fein, J. B., Burns, P. C., Szymanowski, J. E. S., Converse, J.: Solubility measurements of the uranyl oxide hydrate phases metaschoepite, compreignacite, Na-compreignacite, becquerelite, and clarkeite. J. Chem. Thermodyn. 40, 980 (2008).10.1016/j.jct.2008.02.006Search in Google Scholar

22. Debets, P. C., Loopstra, B. O.: The uranates of ammonium. II. X-ray investigation of the compounds in the system NH3-UO3-H2O. J. Inorg. Nucl. Chem. 25, 945 (1963).10.1016/0022-1902(63)80027-5Search in Google Scholar

23. Finch, R. J., Ewing, R. C.: Clarkeite: new chemical and structural data. Am. Mineral. 82, 607 (1997).10.2138/am-1997-5-620Search in Google Scholar

24. Rabinowitch, E., Belford, R. L.: International Series of Monographs on Nuclear Energy, Chemistry Division. Vol. 1. Spectroscopy and Photochemistry of Uranyl Compounds. New York Macmillan (1964), p. 300.10.1016/B978-0-08-010180-4.50007-XSearch in Google Scholar

25. Gorobets, B. S., Sidorenko, G. A.: Luminescence of secondary uranium minerals at low temperatures. At. Energiya. 36, 6 (1974).10.1007/BF01123095Search in Google Scholar

26. Parker, V. B.: Thermal Properties of Aqueous Uni-univalent Electrolytes. US National Bureau of Standards (1965), p. 76.10.6028/NBS.NSRDS.2Search in Google Scholar

27. Kuznetsov, L. M., Tsvigunov, A. N.: Hydrothermal synthesis and physicochemical study of sodium triuranate monohydrate (Na2U3O10.H2O). Radiokhimiya 22, 600 (1980).Search in Google Scholar

28. Wang, Z., Zachara, J. M., Gassman, P. L., Liu, C., Qafoku, O., Yantasee, W., Catalano, J. G.: Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment. Geochim. Cosmochim. Acta 69, 1391 (2005).10.1016/j.gca.2004.08.028Search in Google Scholar

29. Wang, Z., Zachara, J. M., Liu, C., Gassman, P. L., Felmy, A. R., Clark, S. B.: A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate and oxyhydroxide minerals. Radiochim. Acta 96, 591 (2008).10.1524/ract.2008.1541Search in Google Scholar

30. Gorobets, B. S., Engoyan, S. S., Sidorenko, G. A.: Study of uranium and uranium-containing minerals using luminescence spectra. At. Energiya. 42, 177 (1977).10.1007/BF01121388Search in Google Scholar

31. Volod’ko, L. V., Komyak, A. I., Sevchenko, A. N., Umreiko, D. S.: Spectral-luminescent study of crystals of uranyl compounds. J. Lumin. 8, 198 (1974).10.1016/0022-2313(74)90055-6Search in Google Scholar

32. Brittain, H. G., Perry, D. L.: Luminescence spectra of the uranyl ion in two geometrically similar coordination environments. Uranyl nitrate hexahydrate and di-μ-aquo-bis[dioxobis(nitrato)uranium(VI)] diimidazole. J. Phys. Chem. 84, 2630 (1980).10.1021/j100457a031Search in Google Scholar

33. Baran, V., Tympl, M.: Thermal analysis of sodium uranates. Zeitschrift fuer Anorg. und Allg. Chemie. 347, 184 (1966).10.1002/zaac.19663470311Search in Google Scholar

34. Cox, J. D., Wagman, D. D., Medvedev, V. A.: CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp. (1989), p. 271.Search in Google Scholar

35. Merli, L., Fuger, J.: Thermochemistry of a few neptunium and neodymium oxides and hydroxides. Radiochim. Acta 66/67, 109 (1994).10.1524/ract.1994.6667.s1.109Search in Google Scholar

36. Zanonato, P. L., Di Bernardo, P., Grenthe, I.: Chemical equilibria in the binary and ternary uranyl(VI)-hydroxide-peroxide systems. Dalton. Trans. 41, 3380 (2012).10.1039/C1DT11276GSearch in Google Scholar PubMed

37. Grenthe, I., Puigdomènech, I., Allard, B.: Modelling in Aquatic Chemistry. Nuclear Energy Agency, Organisation for Economic Co-operation and Development 1997.Search in Google Scholar

38. Pitzer, K. S. ed: Activity coefficients in electrolyte solutions. CRC Press, Boca Raton [u.a.] (1991), p. 542 S.Search in Google Scholar

39. Puigdomènech, I., Rard, J. A., Plyasunov, A. V., Grenthe, I.: Temperature Corrections to Thermodynamic Data and Enthalpy Calculations., Le Seine-St. Germain 12, Bd. des Îles F-92130 Issy-les-Moulineaux France 1999, p. 1–96.Search in Google Scholar

40. Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics of Uranium. OECD Nuclear Energy Agency, Thermodynamic Data Bank, Issy-les-Moulineaux (France) (1992), p. 715.Search in Google Scholar

41. Tso, T. C., Brown, D., Judge, A. I., Holloway, J. H., Fuger, J.: Thermodynamics of the actinide elements. Part 6. The preparation and heats of formation of some sodium uranates(VI). J. Chem. Soc. Dalton. Trans. Inorg. Chem. 1853 (1985). https://pubs.rsc.org/en/content/articlelanding/1985/dt/dt9850001853#!divAbstract.10.1039/dt9850001853Search in Google Scholar

42. Cordfunke, E. H. P., Loopstra, B. O.: Sodium uranates. Preparation and thermochemical properties. J. Inorg. Nucl. Chem. 33, 2427 (1971).10.1016/0022-1902(71)80217-8Search in Google Scholar

43. Smith, A. L., Colle, J. -Y., Raison, P. E., Beneš, O., Konings, R. J. M.: Thermodynamic investigation of Na2U2O7 using Knudsen effusion mass spectrometry and high temperature X-ray diffraction. J. Chem. Thermodyn. 90, 199 (2015).10.1016/j.jct.2015.06.026Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3056).


Received: 2018-09-04
Accepted: 2019-02-15
Published Online: 2019-05-27
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3056/html
Scroll to top button