Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
Abstract
A new biosorbent containing vinylsulphonic acid and 2-acryloamido-2-methyl-1-propanesulphonic acid in the presence of magnetic nanoparticles, iron (III) oxide, grafted to carboxymethylcellulose sodium salt P(VSA/AMPSO3H/MNPs)-g-CMC bionanocomposite material (BNC) has been synthesized by γ radiation induced grafting copolymerization technique. The effect of comonomer, crosslinker, CMC concentration and the absorbed dose (kGy) on the grafting efficiency and swelling degree was studied. The BNC has been successfully synthesized and the structure of the prepared BNC was confirmed by Fourier transform infrared (FTIR), thermal analysis (TGA and DTA), X-ray powder diffraction (XRD), high-resolution 1H NMR spectroscopy and scanning electron microscopy (SEM) micrograph. Batch studies relevant to adsorption of Cs-137 and Sr-90 from the reactor actual liquid waste samples by the BNC were performed as a function of contact time, solution pH, metal ion concentration, and temperature in simulation studies using the γ emitting isotopes Cs-134 and Sr-85 as representatives of Cs-137 and Sr-90, respectively. Those studies were used to find out the best conditions for isolation of Cs-137 and Sr-90 from reactor actual liquid waste. The isotherms and kinetics were analyzed using different models at 25 °C. The maximum capacity of BNC was found to be 297 and 330 mg g−1 for Cs(I) and Sr(II) metal ions, respectively.
References
1. Ahmadizadegan, H.: Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. J. Colloid Interface Sci. 491, 390 (2017).10.1016/j.jcis.2016.11.043Suche in Google Scholar PubMed PubMed Central
2. Arfat, Y. A., Ahmed, J., Hiremath, N., Auras, R., Joseph, A.: Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll. 62, 191 (2017).10.1016/j.foodhyd.2016.08.009Suche in Google Scholar
3. Khorasani, A. C., Shojaosadati, S. A.: Starch- and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices. Food Hydrocoll. 63, 273 (2017).10.1016/j.foodhyd.2016.09.002Suche in Google Scholar
4. Nath, B. K., Chaliha, C., Kalita, E., Kalita, M. C.: Synthesis and characterization of ZnO:CeO2:nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr. Polym. 148, 397 (2016).10.1016/j.carbpol.2016.03.091Suche in Google Scholar
5. Dervisevic, M., Custiuc, E., Çevik, E., Durmus, Z., Şenel, M., Durmus, A.: Electrochemical biosensor based on REGO/Fe3O4 bionanocomposite interface for xanthine detection in fish sample. Food Control 57, 402 (2015).10.1016/j.foodcont.2015.05.001Suche in Google Scholar
6. Yu, H. R., Hu, J. Q., Liu, Z., Ju, X. J., Xie, R., Wang, W., Chu, L. Y.: Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. J. Hazard. Mater. 323, 632 (2017).10.1016/j.jhazmat.2016.10.024Suche in Google Scholar PubMed
7. Lee, K. Y., Kim, K. W., Park, M., Kim, J., Oh, M., Lee, E. H., Chung, D. Y., Moon, J. K.: Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res. 95, 134 (2016).10.1016/j.watres.2016.02.052Suche in Google Scholar PubMed
8. Seelmann-Eggebert, W., Pfennig, G., Münzel, H.: Chart of the nuclides. Gesellschaft fűr kernforschung m.b.H., Karlsruhe, Germany. Gersbach u. Sohn Verlag, 8, Munchen (1991).Suche in Google Scholar
9. El-Sweify, F. H., Karmeldin, A., El-monem, D. A., Adel, N., Hegazy, W. S.: Isolation and recovery of Cs-137 from reactor actual liquid waste samples for various purposes using ion exchangers of different kinds. Arab J. Nucl. Sci. Appl. 46, 62 (2013).Suche in Google Scholar
10. Mclain, D. R., Tsai, Y., Graczyk, D. G., Canaday, J. L., Steeb, J. L.: An alternative separation procedure for 90-Sr age dating using DGA resin. J. Radioanal. Nucl. Chem. 317, 1439 (2018).10.1007/s10967-018-6057-0Suche in Google Scholar
11. Yadav, M., Sand, A., Mishra, M. M., Tripathy, J., Pandey, V. S., Behari, K.: Synthesis, characterization and applications of graft copolymer (k-carrageenan-g-vinylsulfonic acid). Int. J. Biol. Macromol. 50, 826 (2012).10.1016/j.ijbiomac.2011.11.018Suche in Google Scholar PubMed
12. Borai, E. H., Hamed, M. G., El-kamash, A. M., Siyam, T., El-sayed, G. O.: Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements. J. Colloid Interface Sci. 456, 228 (2015).10.1016/j.jcis.2015.06.020Suche in Google Scholar PubMed
13. Soleimani, F., Sadeghi, M., Shahsavari, H.: Graft copolymerization of Gelatin-g-poly (acrylic acid-co-acrylamide) and calculation of grafting parameters. Indian J. Sci. Technol. 5, 2041 (2012).10.17485/ijst/2012/v5i2.25Suche in Google Scholar
14. Yan, H., Zhang, W., Kan, X., Dong, L., Jiang, Z., Li, H., Yang, H., Cheng, R.: Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids Surfaces A Physicochem. Eng. Asp. 380, 143 (2011).10.1016/j.colsurfa.2011.02.045Suche in Google Scholar
15. Habibi, N.: Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 55 (2014).10.1016/j.saa.2014.04.039Suche in Google Scholar PubMed
16. Gao, Y., Yuan, Y., Ma, D., Li, L., Li, Y., Xu, W., Tao, W.: Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J. Nucl. Mater. 453, 82 (2014).10.1016/j.jnucmat.2014.06.028Suche in Google Scholar
17. Thomas, S., Soloman, P. A., Rejini, V. O.: Preparation of chitosan-CMC blends and studies on thermal properties. Procedia Technol. 24, 721 (2016).10.1016/j.protcy.2016.05.201Suche in Google Scholar
18. Kiro, A., Bajpai, J., Bajpai, A. K.: Designing of silk and ZnO based antibacterial and noncytotoxic bionanocomposite films and study of their mechanical and UV absorption behavior. J. Mech. Behav. Biomed. Mater. 65, 281 (2017).10.1016/j.jmbbm.2016.08.029Suche in Google Scholar PubMed
19. Yadollahi, M., Namazi, H., Barkhordari, S.: Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr. Polym. 108, 83 (2014).10.1016/j.carbpol.2014.03.024Suche in Google Scholar PubMed
20. Gholami, M., Vardini, M. T., Mahdavinia, G. R.: Investigation of the effect of magnetic particles on the Crystal Violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid). Carbohydr. Polym. 136, 772 (2016).10.1016/j.carbpol.2015.09.044Suche in Google Scholar PubMed
21. Kim, Y., Kon, Y., Kim, S., Harbottle, D., Lee, J. W.: Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem. Eng. J. 313, 1042 (2016).10.1016/j.cej.2016.10.136Suche in Google Scholar
22. Yadollahi, M., Gholamali, I., Namazi, H., Aghazadeh, M.: Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int. J. Biol. Macromol. 73, 109 (2015).10.1016/j.ijbiomac.2014.10.063Suche in Google Scholar PubMed
23. Duman, O., Tunc, S., Polat, T. G., Bozo, B. K.: Synthesis of magnetic oxidized multiwalled carbon application in cationic Methylene Blue dye adsorption. Carbohydr. Polym. 147, 79 (2016).10.1016/j.carbpol.2016.03.099Suche in Google Scholar PubMed
24. Mobtaker, H. G., Yousefi, T., Pakzad, S. M.: Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite. J. Nucl. Mater. 482, 306 (2016).10.1016/j.jnucmat.2016.10.034Suche in Google Scholar
25. Sakamoto, S., Kawase, Y.: Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. J. Environ. Radioact. 165, 151 (2016).10.1016/j.jenvrad.2016.10.004Suche in Google Scholar PubMed
26. Chu, F., Ekström, L., Firestone, R.: The Lund/LBNL nuclear data search, http://nucleardata.nuclear.lu.se/toi/. version 2.0 (1999).Suche in Google Scholar
27. Long, J., Li, H., Jiang, D., Luo, D., Chen, Y., Xia, J., Chen, D.: Biosorption of strontium(II) from aqueous solutions by Bacillus cereus isolated from strontium hyperaccumulator Andropogon gayanus. Process Safe. Environ. Prot. 111, 23 (2017).10.1016/j.psep.2017.06.010Suche in Google Scholar
28. Zhang, H., Zhao, X., Wei, J., Li, F.: Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem. Eng. J. 275, 262 (2015).10.1016/j.cej.2015.04.052Suche in Google Scholar
29. Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F., Zhang, M., Cheng, X.: Competitive adsorption of strontium and cobalt onto tin antimonate. Chem. Eng. J. 285, 679 (2016).10.1016/j.cej.2015.10.013Suche in Google Scholar
30. Zhang, L., Wei, J., Zhao, X., Li, F., Jiang, F.: Adsorption characteristics of strontium on synthesized antimony silicate. Chem. Eng. J. 277, 378 (2015).10.1016/j.cej.2015.04.145Suche in Google Scholar
31. Borai, E. H., Breky, M. M. E., Sayed, M. S., Abo-aly, M. M.: Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions. J. Colloid Interface Sci. 450, 17 (2015).10.1016/j.jcis.2015.02.062Suche in Google Scholar PubMed
32. Metwally, S. S., Ahmed, I. M., Rizk, H. E.: Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J. Alloys Compd. 709, 438 (2017).10.1016/j.jallcom.2017.03.156Suche in Google Scholar
33. Jang, J., Mirana, W., Divine, S. D., Nawaz, M., Shahzad, A., Woo, S. H., Lee, D. S.: Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution. Sci. Total Environ. 615, 698 (2018).10.1016/j.scitotenv.2017.10.023Suche in Google Scholar PubMed
34. Tranter, T. J., Herbst, R. S., Todd, T. A., Olson, A. L., Eldredge, H. B.: Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv. Environ. Res. 6, 107 (2002).10.1016/S1093-0191(00)00073-3Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
- Polonium-210 in honey samples from southern Poland
- Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
- Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
- Radiation stability of phosphine oxide functionalized pillar[5]arenes
- Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties
- Irradiated rubber composite with nano and micro fillers for mining rock application
- Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases
Artikel in diesem Heft
- Frontmatter
- Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
- Polonium-210 in honey samples from southern Poland
- Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
- Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
- Radiation stability of phosphine oxide functionalized pillar[5]arenes
- Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties
- Irradiated rubber composite with nano and micro fillers for mining rock application
- Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases