Abstract
In this work, nanosilica and micro carbon black (CB) as a fillers were used to improve the properties of styrene butadiene rubber/natural rubber blends (SBR/NR) crosslinked by γ radiation. Nanosilica was prepared from silica sand and used as eco-friendly material. These composites were characterized by field emission scanning electron microscopy (FESEM) and the measurements of the physic-mechanical and thermal properties were measured. Field emission scanning electron microscopy showed that the composites reinforced by nanosilica and the measurements of the CB are uniformly dispersed in the blends matrix. The results showed that the physico-mechanical and thermal properties were improved indicating a good interaction between the fillers and rubber matrix. The volume fraction measurements confirmed the formation of crosslinking network structure. Meanwhile, the reinforcement of SBR/NR blend loaded with nanosilica showed improved mechanical than blend loaded with both the nanosilica/carbon black and the CB alone. The highest enhancement was obtained for the three fillers by using a concentration of 35 phr at a dose of 150 kGy of γ-irradiation. Thermogravimetric analysis (TGA) indicated that the thermal stability of SBR/NR blend reinforced by nanosilica is higher than those blends reinforced with combined filler the silica. It was also found that the irradiated SBR/NR nanocomposites were more stable than the un-irradiated ones.
Conflict of interest: The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.
References
1. Adhikari, B., Ghosh, A. K., Maiti, S.: Developments in carbon black for rubber reinforcement. J. Polym. Mater. 17, 101 (2000).Search in Google Scholar
2. Maiti, M., Bhattacharya, M., Bhowmick, A. K.: Elastomer nanocomposites. Rubber Chem. Technol. J. 81, 384 (2008).10.5254/1.3548215Search in Google Scholar
3. Brinke, J. W. T., Debnath, S. C., Reuvekamp, L. A. E. M., Noordermeer, J. W. M.: Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos. Sci. Technol. 63(8), 1165 (2003).10.1016/S0266-3538(03)00077-0Search in Google Scholar
4. Arroyo, M., Lopez-Manchadoa, M. A., Valentina, J. L., Carretero, J.: Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos. Sci. Technol. 67(7–8), 1330 (2007).10.1016/j.compscitech.2006.09.019Search in Google Scholar
5. Gunasekaran, S., Natarajan, R. K., Kala, A.: FTIR spectra and mechanical strength analysis of some selected rubber derivatives. Spectrochim. Acta 68(2), 323 (2007).10.1016/j.saa.2006.11.039Search in Google Scholar
6. Stelandre, L. L., Bomal, Y., Flandin, L., Labarre, D.: Dynamic mechanical properties of precipitated silica filled rubber: influence of morphology and coupling agent. Rubber Chem. Technol. J. 76, 145 (2003).10.5254/1.3547730Search in Google Scholar
7. Pal, K., Pal, S. K., Das, C. K., Kim, J. K.: Effect of fillers on morphological and wear characteristics of NR/HSR blends with E-glass fiber. Mater. Design 35, 863 (2012).10.1016/j.matdes.2011.07.074Search in Google Scholar
8. Tinker, A. J., Jones, K. P.: Blends of Natural Rubber. Novel Techniques for Blending with Speciality Polymer (1998). Chapman and Hall, London.10.1007/978-94-011-4922-8Search in Google Scholar
9. Hui, S., Chaki, T. K., Chattopadhyay, S.: Effect of silica-based nanofillers on the properties of a low-density polyethylene/ethylene vinyl acetate copolymer based thermoplastic elastomer. J. Appl. Polym. Sci. 110, 825 (2008).10.1002/app.28537Search in Google Scholar
10. Pal, K., Rajasekar, R., Kang, D. J., Zhang, Z. X., Pal, S. K., Das, C. K., Kim, J. K.: Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica: morphology and wear. Mater. Design 31, 1156 (2013).10.1016/j.matdes.2009.09.037Search in Google Scholar
11. Nasir, M., Choo, C. H.: Cure characteristics and mechanical properties of carbon black filled styrene-butadiene rubber and epoxidized natural rubber blends. Europ. Polym. J. 25, 355 (1989).10.1016/0014-3057(89)90149-3Search in Google Scholar
12. Job, K.: Trends in green tire manufacturing. Rubber World 249(6), 328 (2014).Search in Google Scholar
13. Yatsuyanagi, F., Suzuki, N., Ito, M., Kaidou, H.: Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 42(23), 9523 (2001).10.1016/S0032-3861(01)00472-4Search in Google Scholar
14. Pan, Q. W., Wang, B. B., Chen, Z. H., Zhao, J. Q.: Reinforcement and antioxidation effects of antioxidant functionalized silica in styrene-butadiene rubber. Mater. Design 50, 558 (2013).10.1016/j.matdes.2013.03.050Search in Google Scholar
15. Manshaie, R., Khorasani, S. N., Veshare, S. J., Abadchi, M. R.: Effect of electron beam irradiation on the properties of natural rubber (NR)/styrene–butadiene rubber (SBR) blend. J. Radiat. Phys. Chem. 80, 100 (2011).10.1016/j.radphyschem.2010.08.015Search in Google Scholar
16. Chowdhury, R., Banerji, M. S.: Electron beam irradiation of ethylene-propylene terpolymer: evaluation of trimethylol propane trimethacrylate as a crosslink promoter. J. Appl. Polym. Sci. 97, 968 (2005).10.1002/app.21795Search in Google Scholar
17. El-Nemr, K. F., Mohamed, R. M.: Sorbic acid as friendly curing agent for enhanced properties of ethylene propylene diene monomer rubber using gamma radiation. J. Macromole. Sci. A 54, 1 (2017).10.1080/10601325.2017.1322469Search in Google Scholar
18. Charlesby, A.: Comparative Effects of Radiation (1960), John Wiley & Sons, Inc, New York, p. 24.Search in Google Scholar
19. Midhun Dominic, C. D., Sabura Begum, P. M., Joseph, R., Joseph, D., Kumar, P., Ayswarya, E. P.: Synthesis and characterization and applications of rice husk nano silica in natural rubber. Int. J. Sci. Environ. Technol. 2(5), 1027 (2013).Search in Google Scholar
20. Moosa, A. A., Saddam, B. F.: Synthesis and characterization of nanosilica from rice husk with applications to polymer composites. Am. J. Mater. Sci. 7(6), 223 (2017).Search in Google Scholar
21. Terkula, I. D., Wuana, R. A., Iorungwa, M. S.: Preparation and characterization of ‘green’ nano silica from rice husks. Chem. Mater. Res. 9(6), 1 (2017).Search in Google Scholar
22. Rajkumar, K., Ranjan, P., Thavamani, P., Jeyanthiand, P., Pazhanisamy, P.: Dispersion studied of nanosilica in NBR based polymer nanocomposite. Rasayan J. Chem. 6(2), 122 (2013).Search in Google Scholar
23. Hassan, M. M., Badway, N. A., Elnaggar, M. Y., Hegazy, S. A.: Effects of peroxide and gamma radiation on properties of devulcanized rubber/polypropylene/ethylene propylene diene monomer formulation. J. Appl. Polym. Sci. 131, 40611 (2014).10.1002/app.40611Search in Google Scholar
24. Farshid, G., Ali, M. S., Maryam, M.: Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environm. Stud. Pers. Gulf 2(1), 56 (2015).Search in Google Scholar
25. Majid, M., Masoud, R., Mohammad, H. A., Vahid, M.: Synthesis and Characterization of Nano SiO2 from Rice Husk Ash by Precipitation Method. 3rd National Conference on Modern Researches in Chemistry and Chemical Engineering, Mahshahr, Islamic Azad University of Mahshahr, Iran, 2011 (2014).Search in Google Scholar
26. El-Nemr, K. F., El-Naggar, M. Y., Fathy, E. S.: Waste ceramic dust activated by gamma radiation and coupling agents as reinforcement for nitrile rubber. J. Vinyl Addit. Techn. 24, 37 (2018).10.1002/vnl.21515Search in Google Scholar
27. Wolff, S.: Chemical aspects of rubber reinforcement by fillers. Rubb. Chem. Technol. J. 69(3), 325 (1996).10.5254/1.3538376Search in Google Scholar
28. Kaewsakul, W., Sahakaro, K., Dierkes, W. K., Noordermee, J. W. M.: Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds. J. Polym. Eng. Sci. 55(4), 836 (2015).10.1002/pen.23949Search in Google Scholar
29. Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J. M.: Polyethylene/ground tyre rubber blends: influence of particle morphology and oxidation on mechanical properties. J. Polym. Test 26, 274 (2007).10.1016/j.polymertesting.2006.10.011Search in Google Scholar
30. Scagliusi, R. S., Cardoso, L. C. E., Lugao, A. B.: Effect of gamma radiation on chlorobutyl rubber vulcanized by three different crosslinking systems. Radiat. Phys. Chem. 81(9), 1370 (2012).10.1016/j.radphyschem.2012.01.037Search in Google Scholar
31. Leblanc, J. L.: Rubber-filler interactions and rheological properties in filled compounds. J. Prog. Polym. Sci. 27, 677 (2002).10.1016/S0079-6700(01)00040-5Search in Google Scholar
32. Stockelhuber, K. W., Svistkov, A. S., Pelevin, A. G., Heinrich, G.: Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 44, 4366 (2011).10.1021/ma1026077Search in Google Scholar
33. Atif, M., Bongiovanni, R., Giorcelli, M., Celasco, E., Tagliaferro, A.: Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation. J. Appl. Surf. Sci. 286, 149 (2013).10.1016/j.apsusc.2013.09.038Search in Google Scholar
34. Ozmusul, M. S., Picu, C. R., Sternstein, S. S., Kumar, S. K.: Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules 38, 4495 (2005).10.1021/ma0474731Search in Google Scholar
35. Sae-Oui, P., Rakdee, C., Thanmathorn, P. J.: Use of rice husk ash as filler in natural rubber vulcanizates: In comparison with other commercial fillers. Appl. Polym. Sci. 83, 2485 (2002).10.1002/app.10249Search in Google Scholar
36. Likozar, B., Major, Z.: Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitril rubber/multi-walled carbon nanotubes composites prepared by melt compounding: the effect of acrylonitrile content and hydrogenation. J. Appl. Surf. Sci. 257, 565 (2010).10.1016/j.apsusc.2010.07.034Search in Google Scholar
37. Fritsch, J., Kluppel, M.: Structural dynamics and interfacial properties of filler-reinforced elastomers. J. Phys. Condens. Matter. 23, 1 (2011).10.1088/0953-8984/23/3/035104Search in Google Scholar
38. Zhao, G., Shi, L., Zhang, D., Feng, X., Yuan, S., Zhuo, J.: Synergistic effect of nanobarite and carbon black fillers in natural rubber matrix. Mater. Design 35, 847 (2012).10.1016/j.matdes.2011.05.056Search in Google Scholar
39. Persello, J.: Designing nano structured particular fillers for elastomers. Role of nanostructure and polymer filler interactions in rubber reinforcement, E-MRS Spring Meeting, Strasbourg., France, 2002, p. 8.Search in Google Scholar
40. Vishvanathperumal, S., Gopalakannan, S.: Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polym. Korea 41(3), 433 (2017).10.7317/pk.2017.41.3.433Search in Google Scholar
41. Jacques, J. E.: Rubber compounding, rubber technology and manufacture, 2nd ed. In: C. M. Blow, C. Hepburn (Eds.), Rubber Technology (1985), Butterworths, UK, p. 386.Search in Google Scholar
42. Durandish, M., Alipour, A.: Investigation morphology, microstructure, and properties of SBR/EPDM/organomontmorillonite nanocomposites. J. Chin. Polym. Sci. 31(4), 660 (2013).10.1007/s10118-013-1262-3Search in Google Scholar
43. Sulkowski, W. W., Danch, A., Moczynski, M., Radon, A., Sulkowska, A., Borek, J.: Thermogravimetric study of rubber waste-polyurethane composites. J. Therm. Anal. Calorim. 78(3), 905 (2004).10.1007/s10973-005-0457-0Search in Google Scholar
44. Shih, Y. F., Jeng, R. J.: Carbon black-containing interpenetrating polymer networks based on unsaturated polyester/epoxyII. Thermal degradation behavior and kinetic analysis. Polym. Degrad. Stab. 77, 67 (2002).10.1016/S0141-3910(02)00080-0Search in Google Scholar
45. Jankovi, B., Cincovi, M. M., Jovanovi, V., Samar, S., Jovanovi, S. S., Markovi, G.: The comparative kinetic analysis of non-isothermal degradation process of acrylonitrile–butadiene/ethylene–propylene–diene rubber blends reinforced with carbon black/silica fillers. Part II. Thermochim. Acta 543, 304 (2012).10.1016/j.tca.2012.05.028Search in Google Scholar
46. Maiti, M., Khatua, B. B., Das, C. K.: Effect of processing on the thermal stability of the blends based on polyurethane: part IV. Polym. Degrad. Stab. 72(3), 499 (2000).10.1016/S0141-3910(01)00050-7Search in Google Scholar
47. Gann, R. G., Dipert, R. A., Drews, M. J.: Flammability. In: J. I. Kroschwitz (Ed.), Encyclopedia of Polymer Science and Engineering (1985), 2nd ed., vol. 7, John Wiley & Sons, Inc., New York, p. 154.Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
- Polonium-210 in honey samples from southern Poland
- Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
- Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
- Radiation stability of phosphine oxide functionalized pillar[5]arenes
- Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties
- Irradiated rubber composite with nano and micro fillers for mining rock application
- Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases
Articles in the same Issue
- Frontmatter
- Thermodynamic description of U(VI) solubility and hydrolysis in dilute to concentrated NaCl solutions at T = 25, 55 and 80 °C
- Polonium-210 in honey samples from southern Poland
- Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
- Removal of Cs-137 and Sr-90 from reactor actual liquid waste samples using a new synthesized bionanocomposite-based carboxymethylcellulose
- Radiation stability of phosphine oxide functionalized pillar[5]arenes
- Radiation – induced preparation of polyaniline/poly vinyl alcohol nanocomposites and their properties
- Irradiated rubber composite with nano and micro fillers for mining rock application
- Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases