Abstract
Room temperature ionic liquids (RTILs) represent a recent new class of solvents with potential application in liquid/liquid extraction based nuclear fuel reprocessing due to their unique physical and chemical properties. The work herein provides a comparison of U(VI) extraction by 8-hydroxyquinoline (HOX) in a commonly used RTIL, i.e. 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and in conventional solvent, i.e. dichloromethane (CH2Cl2). The effect of HOX concentration, solution acidity and nitrate ions on the extraction were discussed in detail, and the speciation analyses of the extracted U(VI) were performed. One of the main emphasis of this work is the extraction mechanism of U(VI) extracted from aqueous phase into RTILs and conventional solvent. In CH2Cl2, the extraction occurs through a combination of ion change and neutral complexation, and the extracted complex is proposed as UO2(OX)2HOX. In [C4mim][PF6], although a cation-change mechanism as previously reported for RTILs-based system was involved, the extracted complex of UO2(OX)1.5(HOX)1.5(PF6)0.5 gave a clear indication that the usage of HOX as an acidic extractant markedly inhibited the solubility loss of [C4mim][PF6] during the extraction by leaching H+ to aqueous phase. Moreover, the extracted U(VI) in [C4mim][PF6] can be easily stripped by using 0.01 M nitric acid, which provides a simple way of the ionic liquid recycling.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21471153
Award Identifier / Grant number: 21577144
Award Identifier / Grant number: U1432103
Funding source: Chinese Academy of Sciences
Award Identifier / Grant number: XDA030104
Funding statement: Financial support from the National Natural Science Foundation of China (Grant No. 21471153, 21577144 and U1432103) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA030104) are gratefully acknowledged.
Acknowledgments
Financial support from the National Natural Science Foundation of China (Grant No. 21471153, 21577144 and U1432103) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA030104) are gratefully acknowledged.
References
1. Shi, W. Q., Yuan, L. Y., Li, Z. J., Lan, J. H., Zhao, Y. L., Chai, Z. F.: Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochim. Acta 100, 727 (2012).10.1524/ract.2012.1961Suche in Google Scholar
2. Wei, Y. Z., Wang, X. P., Liu, R. Q., Wu, Y., Usuda, S., Arai, T.: An advanced partitioning process for key elements separation from high level liquid waste. Sci. Chin. Chem. 55, 1726 (2012).10.1007/s11426-012-4697-4Suche in Google Scholar
3. Fu, J., Chen, Q. D., Shen, X. H.: Stripping of uranium from an ionic liquid medium by TOPO-modified supercritical carbon dioxide. Sci. Chin. Chem. 58, 545 (2015).10.1007/s11426-014-5162-3Suche in Google Scholar
4. Visser, A. E., Rogers, R. D.: Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J. Solid State Chem. 171, 109 (2003).10.1016/S0022-4596(02)00193-7Suche in Google Scholar
5. Panja, S., Mohapatra, P. K., Tripathi, S. C., Gandhi, P. M., Janardan, P.: A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 96, 289 (2012).10.1016/j.seppur.2012.06.015Suche in Google Scholar
6. Giridhar, P., Venkatesan, K. A., Srinivasan, T. G., Rao, P. R. V.: Extraction of uranium(VI) from nitric acid medium by 1.1M tri-n-butylphosphate in ionic liquid diluent. J. Radioanal. Nucl. Chem. 265, 31 (2005).10.1007/s10967-005-0785-7Suche in Google Scholar
7. Giridhar, P., Venkatesan, K. A., Subramaniam, S., Srinivasan, T. G., Rao, P. R. V.: Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J. Alloys Compd. 448, 104 (2008).10.1016/j.jallcom.2007.03.115Suche in Google Scholar
8. Barber, P. S., Kelley, S. P., Rogers, R. D.: Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via eta(2) coordination. RSC Adv. 2, 8526 (2012).10.1039/c2ra21344cSuche in Google Scholar
9. Srncik, M., Kogelnig, D., Stojanovic, A., Korner, W., Krachler, R., Wallner, G.: Uranium extraction from aqueous solutions by ionic liquids. Appl. Radiat. Isot. 67, 2146 (2009).10.1016/j.apradiso.2009.04.011Suche in Google Scholar PubMed
10. Sasaki, K., Suzuki, T., Mori, T., Arai, T., Takao, K., Ikeda, Y.: Selective liquid-liquid extraction of uranyl species using task-specific ionic liquid, betainium bis(trifluoromethylsulfonyl)imide. Chem. Lett. 43, 775 (2014).10.1246/cl.140048Suche in Google Scholar
11. Raut, D. R., Mohapatra, P. K.: Extraction of uranyl ion using 2-thenoyltrifluoro acetone (htta) in room temperature ionic liquids. Sep. Sci. Technol. 50, 380 (2015).10.1080/01496395.2014.973523Suche in Google Scholar
12. Mohapatra, P. K., Raut, D. R., Sengupta, A.: Extraction of uranyl ion from nitric acid medium using solvent containing TOPO and its mixture with D2EHPA in room temperature ionic liquids. Sep. Purif. Technol. 133, 69 (2014).10.1016/j.seppur.2014.06.033Suche in Google Scholar
13. Gaillard, C., Boltoeva, M., Billard, I., Georg, S., Mazan, V., Ouadi, A.: Ionic liquid-based uranium(VI) extraction with malonamide extractant: cation exchange vs. neutral extraction. RSC Adv. 6, 70141 (2016).10.1039/C6RA11345ASuche in Google Scholar
14. Xie, Z. B., Kang, H. T., Chen, Z. S., Zhang, S. H., Le, Z. G.: Liquid-liquid extraction of U(VI) using malonamide in room temperature ionic liquid. J. Radioanal. Nucl. Chem. 308, 573 (2016).10.1007/s10967-015-4471-0Suche in Google Scholar
15. Rama, R., Kumaresan, R., Venkatesan, K. A., Antony, M. P., Rao, P. R. V.: Insights into the extraction behavior of U(VI) in Aliquat-336 based ionic liquids. Radiochim. Acta 102, 1009 (2014).10.1515/ract-2013-2228Suche in Google Scholar
16. Bonnaffe-Moity, M., Ouadi, A., Mazan, V., Miroshnichenko, S., Ternova, D., Georg, S., Sypula, M., Gaillard, C., Billard, I.: Comparison of uranyl extraction mechanisms in an ionic liquid by use of malonamide or malonamide-functionalized ionic liquid. Dalton Trans. 41, 7526 (2012).10.1039/c2dt12421aSuche in Google Scholar PubMed
17. Mori, T., Takao, K., Sasaki, K., Suzuki, T., Arai, T., Ikeda, Y.: Homogeneous liquid-liquid extraction of U(VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Sep. Purif. Technol. 155, 133 (2015).10.1016/j.seppur.2015.01.045Suche in Google Scholar
18. Singh, M., Sengupta, A., Murali, M. S., Thulasidas, S. K., Kadam, R. M.: Selective separation of uranium from nuclear waste solution by bis(2,4,4-trimethylpentyl)phosphinic acid in ionic liquid and molecular diluents: a comparative study. J. Radioanal. Nucl. Chem. 309, 1199 (2016).10.1007/s10967-016-4691-ySuche in Google Scholar
19. Sun, M., Yuan, L. Y., Tan, N., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Solvent extraction of uranium(VI) by a dipicolinamide using a room-temperature ionic liquid. Radiochim. Acta 102, 87 (2014).10.1515/ract-2014-2095Suche in Google Scholar
20. Yuan, L. Y., Sun, M., Liao, X. H., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Sci. Chin. Chem. 57, 1432 (2014).10.1007/s11426-014-5194-8Suche in Google Scholar
21. Yuan, L. Y., Sun, M., Mei, L., Wang, L., Zheng, L. R., Gao, Z. Q., Zhang, J., Zhao, Y. L., Chai, Z. F., Shi, W. Q.: New insight of coordination and extraction of uranium(vi) with n-donating ligands in room temperature ionic liquids: N,N′-diethyl-N,N′-ditolyldipicolinamide as a case study. Inorg. Chem. 54, 1992 (2015).10.1021/ic502890wSuche in Google Scholar
22. Dyrssen, D., Dahlberg, V.: Studies on the extraction of metal complexes .8. The extraction of La, Sm, Hf, Th, and U(Vi) with Oxine and Cupferron. Acta Chem. Scand. 7, 1186 (1953).10.3891/acta.chem.scand.07-1186Suche in Google Scholar
23. Rulfs, C. L., De, A. K., Lakritz, J., Elving, P. J.: Extraction of uranium by 8-quinolinol and its derivatives. Analy. Chem. 27, 1802 (1955).10.1021/ac60107a037Suche in Google Scholar
24. Ōki, S.: Complexes formed in the chloroform extraction of uranium(VI) with oxine. Talanta 16, 1153 (1969).10.1016/0039-9140(69)80160-8Suche in Google Scholar
25. Favre-Reguillon, A., Murat, D., Cote, G., Draye, M.: Cloud point and solvent extraction study of uranium(VI) by 8-hydroxyquinoline. J. Chem. Technol. Biotechnol. 87, 1497 (2012).10.1002/jctb.3781Suche in Google Scholar
26. Rohwer, H., Rheeder, N., Hosten, E.: Interactions of uranium and thorium with arsenate III in an aqueous medium. Anal. Chim. Acta 341, 263 (1997).10.1016/S0003-2670(96)00559-4Suche in Google Scholar
27. Murali, M. S., Bonville, N., Choppin, G. R.: Uranyl ion extraction into room temperature ionic liquids: species determination by ESI and MALDI-MS. Solvent Extr. Ion Exch. 28, 495 (2010).10.1080/07366299.2010.480928Suche in Google Scholar
28. Shen, Y. L., Tan, X. W., Wang, L., Wu, W. S.: Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep. Purif. Technol. 78, 298 (2011).10.1016/j.seppur.2011.01.042Suche in Google Scholar
29. Dietz, M. L., Stepinski, D. C.: Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75, 598 (2008).10.1016/j.talanta.2007.11.051Suche in Google Scholar PubMed
30. Visser, A. E., Swatloski, R. P., Reichert, W. M., Griffin, S. T., Rogers, R. D.: Traditional extractants in nontraditional solvents: Groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res. 39, 3596 (2000).10.1021/ie000426mSuche in Google Scholar
31. Cocalia, V. A., John D. Holbrey, Gutowski, K. E., Bridges, N. J., Rogers, R. D.: Separations of metal ions using ionic liquids: the challenges of multiple mechanisms. Tsinghua Sci. Technol. 11, 188 (2006).10.1016/S1007-0214(06)70174-2Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Cross section measurements of 75As(α,xn)76,77,78Br and 75As(α,x)74As nuclear reactions using the monitor radionuclides 67Ga and 66Ga for beam evaluation
- U(VI) Extraction by 8-hydroxyquinoline: a comparison study in ionic liquid and in dichloromethane
- Preparation, characterization, uranium (VI) biosorption models, and conditions optimization by response surface methodology (RSM) for amidoxime-functionalized marine fungus materials
- β-Zeolite modified by ethylenediamine for sorption of Th(IV)
- Assessment of surface reactivity of thorium oxide in conditions close to chemical equilibrium by isotope exchange 229Th/232Th method
- Evolution of heavy ions (He2+, H+) radiolytic yield of molecular hydrogen vs. “Track-Segment” LET values
- Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent
- Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem
Artikel in diesem Heft
- Frontmatter
- Cross section measurements of 75As(α,xn)76,77,78Br and 75As(α,x)74As nuclear reactions using the monitor radionuclides 67Ga and 66Ga for beam evaluation
- U(VI) Extraction by 8-hydroxyquinoline: a comparison study in ionic liquid and in dichloromethane
- Preparation, characterization, uranium (VI) biosorption models, and conditions optimization by response surface methodology (RSM) for amidoxime-functionalized marine fungus materials
- β-Zeolite modified by ethylenediamine for sorption of Th(IV)
- Assessment of surface reactivity of thorium oxide in conditions close to chemical equilibrium by isotope exchange 229Th/232Th method
- Evolution of heavy ions (He2+, H+) radiolytic yield of molecular hydrogen vs. “Track-Segment” LET values
- Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent
- Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem