Home Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent
Article
Licensed
Unlicensed Requires Authentication

Radiation induced environmental remediation of Cr(VI) heavy metal in aerated neutral solution under simulated industrial effluent

  • Fathi Djouider EMAIL logo and Mohammed S. Aljohani
Published/Copyright: January 7, 2017

Abstract

Cr(VI) compounds are major water contaminants in most industrial effluents, due to their carcinogenicity, while Cr(III) is an important element for human metabolism. In a previous work, we showed that Cr(VI) was radiolytically reduced to Cr(III) by the CO2ˉ radical at pH 3 N2O-saturated solution in the presence of formate. Here in the present work, this removal was investigated by steady state irradiation and pulse radiolysis in aerated solution at neutral pH, which is close to natural conditions in most wastewaters, where the reducing agent is the superoxide radical anion O2ˉ. The degradation of Cr(VI) increased linearly with the absorbed dose and was significantly enhanced by the added formate but not by the radiolitically produced hydrogen peroxide at this pH. The rate constant for this reduction was found to be 1.28×108 M−1 s−1 and the absorption spectrum of Cr(V) transient species was obtained. A partial recovery of Cr(VI) is observed over a period of ca. 5 ms following a second order kinetics with a rate constant 8.0×106 M−1 s−1. These outcomes suggest that gamma-irradiation of Cr(VI)-contaminated wastewaters and industrial effluents in presence of formate can be simple, effective and economical means for the remediation of this major contaminant.

  1. Funding: Partial financial assistance from the Nuclear Engineering Department of King Abdulaziz University is gratefully acknowledged.

References

1. Park, D., Yun, Y. S., Jo, J. H., Park, J. M.: Biosorption process for treatment of electroplating wastewater containing Cr(VI): laboratory scale feasibility test. Ind. Eng. Chem. 45, 5059 (2006).10.1021/ie060002dSearch in Google Scholar

2. Soudani, N., Sefi, M., Bouaziz, H., Chtourou, Y., Boudawara, T., Zeghal, N.: Nephrotoxicity induced by chromium (VI) in adult rats and their progeny. Hum. Exp. Toxicol. 30, 1233 (2011).10.1177/0960327110387454Search in Google Scholar

3. Mertz, W.: Chromium in human nutrition: a review. J. Nutr. 123, 626 (1993).10.1093/jn/123.4.626Search in Google Scholar

4. O’Brien, T. J., Ceryak, S., Patierno, S. R.: Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat. Res. 533, 3 (2003).10.1016/j.mrfmmm.2003.09.006Search in Google Scholar

5. Ludwig, R. D., Su, C., Lee, T. R., Wilkin, R. T., Acree, S. D., Ross, R. R., Keeley, A.: In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environ. Sci. Technol. 41, 5299 (2007).10.1021/es070025zSearch in Google Scholar

6. Zahoor, A., Rehman, A.: Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci. 21, 814 (2009).10.1016/S1001-0742(08)62346-3Search in Google Scholar

7. Omole, M. A., K’Owino, I. O., Sadik, O. A.: Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl. Catal. B-Environ. 76, 158 (2007).10.1016/j.apcatb.2007.05.018Search in Google Scholar

8. Yang, C., Meldon, J. H., Lee, B., Yi, H.: Investigation on the catalytic reduction of hexavalent chromium by viral-templated nanocatalysts. Catal. Today 233, 108 (2014).10.1016/j.cattod.2014.02.043Search in Google Scholar

9. Szulczewski, M. D., Helmke, P. A., Bleam, W. F.: XANES spectroscopy studies of Cr(VI) reduction by thiols and organosulfur compounds and humic substances. Environ. Sci. Technol. 35, 1134 (2001).10.1021/es001301bSearch in Google Scholar PubMed

10. Pikaev, A. K.: Application of pulse radiolysis and computer simulation for the study of the mechanism of radiation purification of polluted water. Res. Chem. Intermediat. 27, 775 (2001).10.1163/15685670152622059Search in Google Scholar

11. Watts, M. P., Coker, V. S., Parry, S. A., Thomas, R. A. P., Kalin, R., Lloyd, J. R.: Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry. Appl. Catal. B 170, 162 (2015).10.1016/j.apcatb.2015.01.017Search in Google Scholar

12. Julsing, H. G., McCrindle, R. I.: The use of sodium formate for the recovery of precious metals from acidic base metal effluents. J. Chem. Technol. Biot. 76, 349 (2001).10.1002/jctb.385Search in Google Scholar

13. Ramos, D. D., Bezerra, P. C. S., Quina, F. H., Dantas, R. F., Casagrande, G. A., Oliveira, S. C., Oliveira, M. R. S., Oliveira, L. C. S., Ferreira, V. S., Oliveira, S. L., Machulek Jr. A.: Synthesis and characterization of TiO2 and TiO2/Ag for use in photodegradation of methylviologen, with kinetic study by laser flash photolysis. Environ. Sci. Pollut. R. 22, 774 (2015).10.1007/s11356-014-2678-1Search in Google Scholar

14. Kelly, D. P., Wood, A. P., Gottschal, J. C., Kuenen, J. G: Autotrophic metabolism of formate by Thiobacillus strain A2. J. Gen. Microbiol. 114, 1 (1979).10.1099/00221287-114-1-1Search in Google Scholar

15. Friedrich, C. G., Bowien, B., Friedrich, B.: Formate and oxalate metabolism in Alcaligenes eutrophus. J. Gen. Microbiol. 115, 185 (1979).10.1099/00221287-115-1-185Search in Google Scholar

16. Muller, U., Willnow, P., Ruschig, U., Hopner, T.: Formate dehydrogenase from Pseudornonas oxalaticus. Eur. J. Biochem. 83, 485 (1978).10.1111/j.1432-1033.1978.tb12115.xSearch in Google Scholar

17. Nurhayati, R. W., Ojima, Y., Kitatsuji, S., Suryadarma, P., Taya, M.: An aerobic formate-utilizing bacterium, Cupriavidus sp., isolated from activated sludge of wastewater treatment. Ann. Microbiol. 64, 869 (2014).10.1007/s13213-013-0663-4Search in Google Scholar

18. Namasivayam, C., Ranganathan, K.: Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater. Environ. Pollut. 82, 255 (1993).10.1016/0269-7491(93)90127-ASearch in Google Scholar

19. Juárez-Calderón, J. M., Negrón-Mendoza, A., Ramos-Bernal, S.: Irradiation of ferrous ammonium sulfate for its use as high-absorbed dose and low-temperature dosimeter. Radiat. Phys. Chem. 76, 1829 (2007).10.1016/j.radphyschem.2007.02.106Search in Google Scholar

20. Buxton, G. V., Stuart, C. R.: Re-evaluation of the thiocyanate dosimeter for pulse radiolysis. J. Chem. Soc. Faraday Trans. 91, 279 (1995).10.1039/ft9959100279Search in Google Scholar

21. Cieślak-Golonka M, Daszkiewicz M.: Coordination geometry of Cr(VI) species: structural and spectroscopic characteristics. Coord. Chem. Rev. 249, 2391 (2005).10.1016/j.ccr.2005.03.029Search in Google Scholar

22. Yamashita, S., Iwamatsu, K., Maehashi, Y., Taguchi, M., Hata, K.: Sequential radiation chemical reactions in aqueous bromide solutions: pulse radiolysis experiment and spur model simulation. Roy. Soc. Ch. 5, 25877 (2015).10.1039/C5RA03101JSearch in Google Scholar

23. Buxton, G.V.: Radiation chemistry of liquid state: (1) water and homogeneous aqueous solutions. In: Farhataziz, M. A. J. Rogers (Eds.), Radiation Chemistry: Principles and Applications, (1987) New York, VCH Publishers.Search in Google Scholar

24. Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH˙/ Oˉ˙) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513 (1988).10.1063/1.555805Search in Google Scholar

25. Ilan, Y. A., Czapskp, G., Meisel, D.: The one-electron transfer redox potentials of free radicals: the oxygen/superoxide system. Biochim. Biophys. Acta 430, 209 (1976).10.1016/0005-2728(76)90080-3Search in Google Scholar

26. Flyunt, R., Schuchmann, M. N., von Sonntag, C.: A common carbanion intermediate in the recombination and proton-catalyzed disproportionation of the carboxyl radicals anions CO2ˉ˙ in aqueous solution. Chem. Eur. J. 7, 796 (2001).10.1002/1521-3765(20010216)7:4<796::AID-CHEM796>3.0.CO;2-JSearch in Google Scholar

27. Buxton, G. V., Djouider, F.: Use of the dichromate solution as dosimeter for high dose and high dose rate. Radiat. Phys. Chem. 48, 799 (1996).10.1016/S0969-806X(96)00053-9Search in Google Scholar

28. Rao, L., Zhang, Z., Friese, J. I., Ritherdon, B., Clark, S. B., Hess, N. J., Rai, D.: Oligomerization of chromium(III) and its impact on the oxidation of chromium(III) by hydrogen peroxide in alkaline solutions. J. Chem. Soc. Dalton Trans. 2002, 267 (2002).10.1039/b104154cSearch in Google Scholar

29. Pettine, M., Gennari, F., Campanella, L., Millero, F. J.: The effect of organic compounds in the oxidation kinetics of Cr(III) by H2O2. Geochim. Cosmochim. Acta 72, 5692 (2008).10.1016/j.gca.2008.09.009Search in Google Scholar

30. Pettine, M., Campanella, L., Millero, J.: Reduction of hexavalent chromium by H2O2 in acidic solutions. Environ. Sci. Technol. 36, 901 (2002).10.1021/es010086bSearch in Google Scholar

31. Perez-Benito, J. F., Arias, C.: A Kinetic study of the Cr(VI)-hydrogen peroxide reaction. Role of the diperoxochromate(VI) intermediates. J. Phys. Chem. A. 101, 4726 (1997).10.1021/jp963868dSearch in Google Scholar

32. Shi, X., Dalal, N. S.: The role of superoxide radical in chromium (VI) generated hydroxyl radical: the Cr(VI) Haber-Weiss cycle. Arch. Biochem. Biophys. 292, 323 (1992).10.1016/0003-9861(92)90085-BSearch in Google Scholar

33. Koppenol W. H.: The Haber-Weiss cycle - 70 years later. Redox Rep. 6, 229 (2001).10.1179/135100001101536373Search in Google Scholar

34. Czapski, G., Bielski, B. H. J.: Absorption spectra of the OH˙ and Oˉ˙ radicals in aqueous solutions. Radiat. Phys. Chem. 41, 503 (1993).10.1016/0969-806X(93)90012-JSearch in Google Scholar

35. Shi, X., Mao, Y., Knapton, A. D., Ding, M., Rojanasakul, Y., Gannett, P. M., Dalal, N., Liu, K.: Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis 15, 2475 (1994).10.1093/carcin/15.11.2475Search in Google Scholar

36. Romo-Rodríguez, P., Acevedo-Aguilar, F. J., Lopez-Torres, A., Wrobel, K., Wrobel, K., Gutiérrez-Corona J. F.: Cr(VI) reduction by gluconolactone and hydrogen peroxide, the reaction products of fungal glucose oxidase: co-operative interaction with organic acids in the biotransformation of Cr(VI). Chemosphere 134, 563 (2015).10.1016/j.chemosphere.2014.12.009Search in Google Scholar

37. Djouider, F.: Radiolytic formation of non-toxic Cr(III) from toxic Cr(VI) in formate containing aqueous solutions: A system for water treatment. J. Hazard. Mater. 223, 104 (2012).10.1016/j.jhazmat.2012.04.059Search in Google Scholar

38. Aiyar, J., Berkovits, H. J., Floyd, R. A., Wetterhahn, K. E.: Reaction of chromium(VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium(VI)-induced DNA damage. Environ. Health Perspect. 92, 53 (1991).10.1289/ehp.919253Search in Google Scholar

39. Flint, D. H., Tuminello, J. F., Emptage, M. H.: The inactivation of Fe-S cluster containing hydrolyases by superoxide. J. Biol. Chem. 268, 22369 (1993).10.1016/S0021-9258(18)41538-4Search in Google Scholar

40. Keyer, K., Imlay, J. A.: Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad Sci. USA 93, 13635 (1996).10.1073/pnas.93.24.13635Search in Google Scholar

41. Faulkner, K. M., Liochev, S. I., Fridovich, I.: Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269, 23471 (1994).10.1016/S0021-9258(17)31540-5Search in Google Scholar

Received: 2016-3-23
Accepted: 2016-11-12
Published Online: 2017-1-7
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2608/html
Scroll to top button