Home Preparation, characterization, uranium (VI) biosorption models, and conditions optimization by response surface methodology (RSM) for amidoxime-functionalized marine fungus materials
Article
Licensed
Unlicensed Requires Authentication

Preparation, characterization, uranium (VI) biosorption models, and conditions optimization by response surface methodology (RSM) for amidoxime-functionalized marine fungus materials

  • Xuechun Yang , Yang Gao , Min Jiang , Dianxiong He , Sen Liao , Dan Hou , Xueming Yan , Wei Long , Yaxin Wu and Ni Tan EMAIL logo
Published/Copyright: January 7, 2017

Abstract

Amidoxime-functionalized marine fungus Fusarium sp. #ZZF51 (ZGDA) was synthesized and studied to adsorb uranium (VI) from the aqueous solution. Different instrumental techniques such as FTIR, SEM, and TGA were employed for the characterization of the manufactured materials, and theirs ability of removal uranium (VI) was optimized using RSM. The experimental results showed the maximum adsorption capacity for the synthesized materials was 230.78 mg g−1 at the following optimization conditions: S–L ratio 150 mg L−1, pH 5.13, uranium (VI) initial concentration 40 mg L−1, and equilibrium time 122.40 min. More than 85% of the absorbed uranium (VI) could be desorbed by 0.5 or 1.0 mol L−1 HCl, and the modified mycelium could be reused at least five times. The thermodynamic experimental data of adsorption uranium (VI) could fit better with Langumir and Freundlich isotherms models, and the pseudo-second-order model was better to interpret the kinetics process. The modified fungus materials exhibited the better sorption capacity for uranium (VI) in comparison with raw biomass should be attributed to the strong chelation of amidoxime to uranium (VI) ions.

Acknowledgments

The authors wish to gratefully acknowledge the Science and Technology Development Major Project of Hunan (No. 2015SK20052) for the financial support.

References

1. Niu, Y., Liu, H., Qu, R., Liang, S., Chen, H., Sun, C., Cui, Y.: Preparation and characterization of thiourea-containing silica gel hybrid materials for Hg(II) adsorption. Ind. Eng. Chem. Res. 54, 1656 (2015).10.1021/ie5046928Search in Google Scholar

2. Liu, Y., Cao, X., Hua, R., Wang, Y., Liu, Y., Pang, C., Wang, Y.: Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy. 104, 150 (2010).10.1016/j.hydromet.2010.05.009Search in Google Scholar

3. Yuan, D., Chen, L., Xiong, X., Yuan, L., Liao, S., Wang, Y.: Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem. Eng. J. 285, 358 (2016).10.1016/j.cej.2015.10.014Search in Google Scholar

4. Vasconcelos, H. L., Fávere, V. T., Gonçalves, N. S., Laranjeira, M. C. M.: Chitosan modified with reactive blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions. Funct. Polym. 67, 1052 (2007).10.1016/j.reactfunctpolym.2007.06.009Search in Google Scholar

5. Chen, S., Shen, W., Yu, F., Wang, H.: Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose. Polym. Bull. 63, 283 (2009).10.1007/s00289-009-0088-1Search in Google Scholar

6. Garcia, L., Torrent, A., Anticó, E., Fontàs, C., Roglans, A.: Selective Pd(II) and Pt(IV) sorption using novel polymers containing azamacrocycle functional groups. React. Funct. Polym. 68, 1088 (2008).10.1016/j.reactfunctpolym.2008.02.012Search in Google Scholar

7. Li, X., Ding, C., Liao, J., Du, L., Sun, Q., Yang, J, Liu, N.: Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3. J. Environ. Sci. 41, 162 (2016).10.1016/j.jes.2015.06.007Search in Google Scholar PubMed

8. Ding, D. X., Xin, X., Li, L., Hu, N., Li, G. Y., Wang, Y. D., Fu, P. K.: Removal and recovery of U (VI) from low concentration radioactive wastewater by ethylenediamine-modified biomass of Aspergillus niger. Water, Air, Soil Pollut. 225, 1 (2014).10.1007/s11270-014-2206-4Search in Google Scholar

9. Amin, F., Talpur, F. N., Balouch, A., Chandio, Z. A., Surhio, M. A., Afridi, H. I.: Biosorption of mercury (II) from aqueous solution by fungal biomass Pleurotus eryngii: isotherm, kinetic, and thermodynamic studies. Environ. Prog. Sustain. 35, 1274 (2016).10.1002/ep.12342Search in Google Scholar

10. Favas, P. J., Pratas, J., Mitra, S., Sarkar, S. K., Venkatachalam, P.: Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci. Total Environ. 568, 350 (2016).10.1016/j.scitotenv.2016.06.024Search in Google Scholar PubMed

11. Zhao, C., Liu, J., Tu, H., Li, F., Li, X., Yang, J., Sun, Q.: Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ. Sci. Pollut. Res. 23, 24846 (2016).10.1007/s11356-016-7722-xSearch in Google Scholar PubMed

12. Zhou, L., Wang, Y., Zou, H., Liang, X., Zeng, K., Liu, Z., Adesina, A. A.: Biosorption characteristics of uranium (VI) and thorium (IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J. Radioanal. Nucl. Chem. 307, 635 (2016).10.1007/s10967-015-4166-6Search in Google Scholar

13. Yang, H. B., Tan, N., Wu, F. J., Liu, H. J., Sun, M., She, Z. G., Lin, Y. C.: Biosorption of uranium (VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J. Radioanal. Nucl. Chem. 292, 1011 (2012).10.1007/s10967-011-1552-6Search in Google Scholar PubMed PubMed Central

14. Shao, D., Li, J., Wang, X.: Poly(amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater. Sci. China Chem. 57, 1449 (2014).10.1007/s11426-014-5195-7Search in Google Scholar

15. Çaykara, T., Alaslan, Ş. Ş., Gürü, M., Bodugöz, H., Güven, O.: Preparation and characterization of poly(isobutyl methacrylate) microbeads with grafted amidoxime groups. Radiat. Phys. Chem. 76, 1569 (2007).10.1016/j.radphyschem.2006.12.009Search in Google Scholar

16. Li, L., Hu, N., Ding, D., Xin, X., Wang, Y., Xue, J., Zhang, H., Tan, Y.: Adsorption and recovery of U(VI) from low concentration uranium solution by amidoxime modified Aspergillus niger. RSC Adv. 5, 65827 (2015).10.1039/C5RA13516HSearch in Google Scholar

17. Yang, S. K., Tan, N., Yan, X. M., Chen, F., Long, W., Lin, Y. C.: Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51. Mar. Pollut. Bull. 74, 213 (2013).10.1016/j.marpolbul.2013.06.055Search in Google Scholar PubMed

18. Nikje, M. M. A., Tehrani, Z. M.: Synthesis and characterization of waterborne polyurethane-chitosan nanocomposites. Polym. Plast. Technol. Eng. 49, 812 (2010).10.1080/03602551003749627Search in Google Scholar

19. Dey, R. K., Oliveira, A. S., Patnaik, T., Singh, V. K., Tiwary, D., Airoldi, C.: Grafting of organosilane derived from 3-glycidoxypropyltrimethoxysilane and thiourea onto magnesium phyllosilicate by sol–gel process and investigation of metal adsorption properties. J. Solid. State. Chem. 182, 2010 (2009).10.1016/j.jssc.2009.05.011Search in Google Scholar

20. Qu, R., Zhang, Y., Qu, W., Sun, C., Chen, J., Ping, Y., Chen, H., Niu, Y.: Mercury adsorption by sulfur- and amidoxime-containing bifunctional silica gel based hybrid materials. Chem. Eng. J. 219, 51 (2013).10.1016/j.cej.2012.12.070Search in Google Scholar

21. Zhao, Y., Li, J., Zhao, L., Zhang, S., Huang, Y., Wu, X., Wang, X.: Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 235, 275 (2014).10.1016/j.cej.2013.09.034Search in Google Scholar

22. Sun, Y., Wei, J., Zhang, J. P., Yang, G.: Optimization using response surface methodology and kinetic study of Fischer–Tropsch synthesis using SiO2 supported bimetallic Co–Ni catalyst. J. Nat. Gas. Sci. Eng. 28, 173 (2016).10.1016/j.jngse.2015.11.008Search in Google Scholar

23. Sheng. D., Guang, S. Z., Yang, L., Yuan, D., Peng, W.: Facile preparation of amidoxime-functionalized fiber by microwave-assisted method for the enhanced adsorption of chromium (VI) from aqueous solution. RSC. Adv. 6, 64665 (2016).10.1039/C6RA11727ASearch in Google Scholar

24. Jyotsna Goel, K. K., Rajagopal, C., Garg, V. K.: Removal of Lead(II) from aqueous solution by adsorption on carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 44, 1987 (2005).10.1021/ie0490684Search in Google Scholar

25. Yi, L., Yian, Z., Ai, Q. W.: Response surface methodology for optimizing adsorption process parameters for methylene blue removal by a hydrogel composite. Adsorpt. Sci. Technol. 28, 913 (2010).10.1260/0263-6174.28.10.913Search in Google Scholar

26. Xu, C., Wang, J., Yang, T., Chen, X., Liu, X., Ding, X.: Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr. Polym. 121, 79 (2015).10.1016/j.carbpol.2014.12.024Search in Google Scholar PubMed

27. Chen, F., Tan, N., Yan, X. M., Yang, S. K., She, Z. G., Lin, Y. C.: Uranium (VI) removal from aqueous solution by poly(amic acid)-modified marine fungus. Sep. Sci. Technol. 49, 1251 (2014).10.1080/01496395.2013.877033Search in Google Scholar

28. Liao, S., Zhang, W., Long, W., Hou, D., Yang, X. C., Tan, N.: Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology. Appl. Surf. Sci. 364, 579 (2016).10.1016/j.apsusc.2015.12.184Search in Google Scholar

29. Xu, Y., Hao, Z., Chen, H., Sun, J., Wang, D.: Preparation of polyacrylonitrile initiated by modified corn starch and adsorption for mercury after modification. Ind. Eng. Chem. Res. 53, 4871 (2014).10.1021/ie404365hSearch in Google Scholar

30. Gao, B., Gao, Y., Li, Y.: Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions. Chem. Eng. J. 158, 542 (2010).10.1016/j.cej.2010.01.046Search in Google Scholar

31. Kavaklı, P. A., Güven, O.: Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J. Appl. Polym. Sci. 93, 1705 (2004).10.1002/app.20616Search in Google Scholar

32. Başarır, S. Ş., Bayramgil, N. P.: The uranium recovery from aqueous solutions using amidoxime modified cellulose derivatives. IV. Recovery of uranium by amidoximated hydroxypropyl methylcellulose. Cellulose. 20, 827 (2012).10.1007/s10570-012-9845-7Search in Google Scholar

33. Singh, K. P., Gupta, S., Singh, A. K., Sinha, S.: Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186, 1462 (2011).10.1016/j.jhazmat.2010.12.032Search in Google Scholar

34. Salehi, I., Shirani, M., Semnani, A., Hassani, M., Habibollahi, S.: Comparative study between response surface methodology and artificial neural network for adsorption of crystal violet on magnetic activated carbon. Arab. J. Sci. Eng. 41, 2611 (2016).10.1007/s13369-016-2109-3Search in Google Scholar

35. Roosta, M., Ghaedi, M., Daneshfar, A., Sahraei, R.: Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Spectrochim. Acta, Part A. 122, 223 (2014).10.1016/j.saa.2013.10.116Search in Google Scholar

36. Al-Qodah, Z.: Adsorption of dyes using shale oil ash. Water Res. 34, 4295 (2000).10.1016/S0043-1354(00)00196-2Search in Google Scholar

37. Amini, M., Younesi, H., Bahramifar, N., Lorestani, A. A., Ghorbani, F., Daneshi, A., Sharifzadeh, M.: Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater. 154, 694 (2008).10.1016/j.jhazmat.2007.10.114Search in Google Scholar PubMed

38. Mondal, P., Mehta, D., George, S.: Defluoridation studies with synthesized magnesium-incorporated hydroxyapatite and parameter optimization using response surface methodology. Desalin. Water. Treat. 57, 27294 (2016).10.1080/19443994.2016.1167628Search in Google Scholar

39. Masoumi, A., Ghaemy, M.: Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: isotherm and kinetic study. Carbohydr. Polym. 108, 206 (2014).10.1016/j.carbpol.2014.02.083Search in Google Scholar PubMed

40. Azizian, S., Haerifar, M., Bashiri, H.: Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem. Eng. J. 146, 36 (2009).10.1016/j.cej.2008.05.024Search in Google Scholar

Received: 2016-8-9
Accepted: 2016-11-9
Published Online: 2017-1-7
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2016-2678/html
Scroll to top button