Home Random and block architectures of N-arylitaconimide monomers with methyl methacrylate
Article
Licensed
Unlicensed Requires Authentication

Random and block architectures of N-arylitaconimide monomers with methyl methacrylate

  • Chetana Deoghare EMAIL logo
Published/Copyright: June 7, 2023
Become an author with De Gruyter Brill

Abstract

“Itaconimide” is the members of imide (–CO–NH–CO–) family with reactive exocyclic double bond and it is easily obtained from the renewable resource i.e. D-glucose. The polymerization of various N-arylitaconimide (NAI) monomers with methyl methacrylate (MMA) have been reported to improve the glass transition temperature (T g) and thermal stability of poly(methyl methacrylate) (PMMA). In literature, these studies have been done mostly using conventional free radical polymerization methods, which restricts the architecture of copolymers to “random” only. The block copolymers of NAI and MMA are an important due to the combination of glassy PMMA and thermally stable poly(NAI), which offers its applications for higher temperature service. The architectural control of polymers in provisions of its topology, composition, and various functionalities is possibly obtained using reversible-deactivation radical polymerizations (RDRPs). In RDRPs, the concentration of free radical is controlled in such a way that the termination reactions are minimized (normally in range of 1–10 mol%), and not allowed to obstruct with the desired architecture. However, this is possible by achieving (or by establishing) a rapid dynamic equilibrium between propagating radical and dormant species (i.e. R–X). Among all RDRPs, the atom transfer radical polymerization (ATRP) is very popular and adaptable method for the synthesis of polymers with specifically controlled architecture. Two different architectures of NAI and MMA copolymers are reported using ATRP process. The effect of various pedant groups on the rate constants of propagation (k p) and thermal properties NAI and MMA copolymers is studied. The poly(NAI-ran-MMA)-b-poly(MMA) are stable up to 200 °C and degraded in three steps. Whereas, the poly(NAI-ran-MMA)-b-poly(NAI) are stable up to 330 °C and degraded in two steps. The density functional theory methods are used for calculation of equilibrium constants (K ATRP) for the ATRP process for the series of laboratory synthesized alkyl halides. A good agreement was observed between the experimentally determined and theoretically calculated K ATRP values. The mechanistic studies are carried for poly(NAI-ran-MMA) copolymer system using statistical model discrimination method along with 1H decoupled 13C NMR spectroscopy. For studying the mechanism of copolymerization of NAI and MMA via ATRP methods, “trimer model or penultimate model” will be more accurate than “dimer model or terminal model”.


Corresponding author: Chetana Deoghare, Department of Chemistry, Institute of Sciences, Humanities & Liberal Studies, Indus University, Rancharda, via Shilaj, Ahmedabad 382115, Gujarat, India, E-mail:

Acknowledgment

I am thankful to Prof. R. N. Behera, Department of Chemistry, BITS, Pilani – K. K. Birla Goa Campus, Goa, India, for his guidance and support to carry out this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Darshan, Sharma, P, Malhotra, P, Narula, AK. Synthesis, characterization, and thermal properties of tris (3-aminophenyl) phosphine oxide-based nadimide resins. J Appl Polym Sci 2008;107:1628–34. https://doi.org/10.1002/app.26646.Search in Google Scholar

2. Oishi, T. Polymerizations and copolymerizations of N-(4-substituted phenyl)itaconimides. Polym J 1980;12:719–27. https://doi.org/10.1295/polymj.12.719.Search in Google Scholar

3. Mishra, A, Choudhary, V. Studies on the copolymerization of methyl methacrylate and N-aryl maleimides. J Appl Polym Sci 1996;62:707–12. https://doi.org/10.1002/(sici)1097-4628(19961024)62:4<707::aid-app14>3.0.co;2-s.10.1002/(SICI)1097-4628(19961024)62:4<707::AID-APP14>3.0.CO;2-SSearch in Google Scholar

4. Madan, R, Srivastava, A, Anand, RC, Varma, IK. Polymers derived from bicylo[2.2.1]heptene and its derivatives. Prog Polym Sci 1998;23:621–63. https://doi.org/10.1016/s0079-6700(97)00050-6.Search in Google Scholar

5. Solanki, A, Anand, V, Choudhary, V, Varma, IK. Effect of structure on thermal behavior of homopolymers and copolymers of Itaconimides. J Macromol Sci, Polym Rev 2001;C41:253–84. https://doi.org/10.1081/mc-100107859.Search in Google Scholar

6. Oishi, T. Radical copolymerizations of N-(4-substituted phenyl)citraconimide with styrene or methyl methacrylate. Polym J 1980;12:799–807. https://doi.org/10.1295/polymj.12.799.Search in Google Scholar

7. Oishi, T, Momoi, M, Fujimoto, M. Reactivities of N-alkylitaconimides in radical copolymerizations with styrene or methyl methacrylate. J Polym Sci, Polym Chem Ed 1983;21:1053–63. https://doi.org/10.1002/pol.1983.170210413.Search in Google Scholar

8. Watanabe, H, Matsumoto, A, Otsu, T. Polymerization of N-alkyl-substituted itaconimides and N-(alkyl-substituted phenyl)itaconimides and characterization of the resulting polymers. J Polym Sci A Polym Chem 1994;32:2073–83. https://doi.org/10.1002/pola.1994.080321109.Search in Google Scholar

9. Bharel, R, Choudhary, V, Varma, IK. Preparation, characterization, and thermal behavior of MMA–N-aryl maleimide copolymers. J Appl Polym Sci 1994;54:2165–70. https://doi.org/10.1002/app.1994.070541319.Search in Google Scholar

10. Bharel, R, Choudhary, V, Varma, IK. Physicomechanical properties of poly(methyl methacrylate-co-N-arylmaleimides). J Appl Polym Sci 1995;57:767–73. https://doi.org/10.1002/app.1995.070570611.Search in Google Scholar

11. Yamazaki, H, Matsumoto, A, Otsu, T. Effect of N-substituents on polymerization reactivity of N-alkylitaconimides in radical polymerization. Eur Polym J 1997;33:157–62. https://doi.org/10.1016/s0014-3057(96)00071-7.Search in Google Scholar

12. Zhao, Y, Li, H, Liu, P, Liu, H, Jiang, J, Xi, F. Reactivity ratios of free monomers and their charge-transfer complex in the copolymerization of N-butyl maleimide and styrene. J Appl Polym Sci 2002;83:3007–12. https://doi.org/10.1002/app.2330.Search in Google Scholar

13. Soykan, C, Erol, I. Radical copolymerization of N-(4-acetyl phenyl)-maleimide and styrene: monomer reactivity ratios and thermal properties. J Appl Polym Sci 2004;91:964–70. https://doi.org/10.1002/app.13296.Search in Google Scholar

14. Anand, V, Choudhary, V. Studies on the copolymerization of methyl methacrylate with N-(o/m/p-chlorophenyl) itaconimides. J Appl Polym Sci 2001;82:2078–86. https://doi.org/10.1002/app.2053.Search in Google Scholar

15. Anand, V, Choudhary, V. Copolymerization and thermal behavior of methyl methacrylate with N-(phenyl/p-tolyl) itaconimides. J Appl Polym Sci 2003;89:1195–202. https://doi.org/10.1002/app.12138.Search in Google Scholar

16. Yahiro, K, Shibata, S, Jia, SR, Park, Y, Okabe, M. Efficient itaconic acid production from raw corn starch. J Ferment Bioeng 1997;84:375–7. https://doi.org/10.1016/s0922-338x(97)89265-3.Search in Google Scholar

17. Reddy, CSK, Singh, RP. Enhanced production of itaconic acid from corn starch and market refuse fruits by genetically manipulated Aspergillus terreus SKR10. Bioresour Technol 2002;85:69–71. https://doi.org/10.1016/s0960-8524(02)00075-5.Search in Google Scholar PubMed

18. Zhang, R, Liu, H, Ning, Y, Yu, Y, Deng, L, Wang, F. Recent advances on the production of itaconic acid via the fermentation and metabolic engineering. Fermentation 2023;9:71–32. https://doi.org/10.3390/fermentation9010071.Search in Google Scholar

19. Chauhan, R, Choudhary, V. Copolymerization of N-(4-carboxyphenyl) itaconimide or N-(4-carboxyphenyl) itaconamic acid with methyl methacrylate. J Appl Polym Sci 2005;98:1909–15. https://doi.org/10.1002/app.22338.Search in Google Scholar

20. Chauhan, R, Choudhary, V. Copolymerization of MMA with N-(methoxyphenyl) itaconimides: effect of position of substituent on monomer reactivity ratio and thermal behavior. J Appl Polym Sci 2008;109:987–96. https://doi.org/10.1002/app.28099.Search in Google Scholar

21. Odian, G. Principles of polymerization, 4th ed. Staten Island: Wiley Interscience; 2004:464–543 pp.10.1002/047147875X.ch6Search in Google Scholar

22. Goto, A, Fukuda, T. Kinetics of living radical polymerization. Prog Polym Sci 2004;29:329–85. https://doi.org/10.1016/j.progpolymsci.2004.01.002.Search in Google Scholar

23. Anand, V, Agarwal, S, Greiner, A, Choudhary, V. Synthesis of methyl methacrylate and N-aryl itaconimide block copolymers via atom-transfer radical polymerization. Polym Int 2005;54:823–8. https://doi.org/10.1002/pi.1776.Search in Google Scholar

24. Mullar, A, Matyjaszewski, K. Radical polymerization, controlled and living polymerization. Weinheim: WILEY-VCH Verlag GmbH and Co. KGaA; 2009:103–66 pp.10.1002/9783527629091.ch3Search in Google Scholar

25a). Braunecker, WA, Matyjaszewski, K. Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 2007;32:93–146. https://doi.org/10.1016/j.progpolymsci.2006.11.002.Search in Google Scholar

b) Matyjaszewski, K. Advanced materials by atom transfer radical polymerization. Adv Mater 2018;30:1706441. https://doi.org/10.1002/adma.201706441.Search in Google Scholar PubMed

26. Oishi, T, Kawamoto, T. Synthesis and polymerization of optically active N-[4-N′(-methylbenzyl)aminocarbonylphenyl]itaconimide. Polym J 1994;26:920–9. https://doi.org/10.1295/polymj.26.920.Search in Google Scholar

27. Oishi, T, Nagai, K, Kawamoto, T, Tsutsumi, H. Synthesis and polymerization of N-[4-(cholesteroxycarbonyl)phenyl]itaconimide. Polymer 1996;37:3131–9. https://doi.org/10.1016/0032-3861(96)89415-8.Search in Google Scholar

28. Chauhan, R, Choudhary, V. Effect of substituents on copolymerization of N-arylsubstituted itaconamic acid/itaconimide with methyl methacrylate: reactivity ratio and thermal behavior. J Appl Polym Sci 2006;101:2391–8. https://doi.org/10.1002/app.23879.Search in Google Scholar

29a). Matyjaszewski, K, editor. Controlled/living radical polymerization, progress in ATRP, NMP, and RAFT; ACS Symposium Series 768. Washington, DC: American Chemical Society; 2000.10.1021/bk-2000-0768Search in Google Scholar

b) Martinez, MR, Schild, D, Bossa, DLF, Matyjaszewski, K. Depolymerization of polymethacrylates by iron ATRP. Macromolecules 2022;55:10590–9. https://doi.org/10.1021/acs.macromol.2c01712.Search in Google Scholar

30. Matyjaszewski, K, editor. Controlled/living radical polymerization, from synthesis to materials; ACS Symposium Series 944. Washington, DC: American Chemical Society; 2006.10.1021/bk-2006-0944Search in Google Scholar

31a). Matyjaszewski, K. Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog Polym Sci 2005;30:858–75. https://doi.org/10.1016/j.progpolymsci.2005.06.004.Search in Google Scholar

b) Pan, X, Fantin, M, Yuan, F, Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem Soc Rev 2018;47:5457–90. https://doi.org/10.1039/c8cs00259b.Search in Google Scholar

32. Jenkins, AD, Jones, RG, Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl Chem 2010;82:483–91. https://doi.org/10.1351/pac-rep-08-04-03.Search in Google Scholar

33. Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012;45:4015–39. https://doi.org/10.1021/ma3001719.Search in Google Scholar

34. Siegwart, DJ, Oh, JK, Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog Polym Sci 2012;37:18–37. https://doi.org/10.1016/j.progpolymsci.2011.08.001.Search in Google Scholar

35a). Matyjaszewski, K, Xia, J. Atom transfer radical polymerization. Chem Rev 2001;101:2921–90. https://doi.org/10.1021/cr940534g.Search in Google Scholar

b) Cuthbert, J, Wanasinghe, SV, Matyjaszewski, K, Konkolewicz, D. Are RAFT and ATRP universally interchangeable polymerization methods in network formation? Macromolecules 2021;54:8331–40. https://doi.org/10.1021/acs.macromol.1c01587.Search in Google Scholar

36. Fischer, H. The persistent radical effect in controlled radical polymerizations. J Polym Sci A Polym Chem 1999;37:1885–901. https://doi.org/10.1002/(sici)1099-0518(19990701)37:13<1885::aid-pola1>3.0.co;2-1.10.1002/(SICI)1099-0518(19990701)37:13<1885::AID-POLA1>3.0.CO;2-1Search in Google Scholar

37. Fischer, H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem Rev 2001;101:3581–610. https://doi.org/10.1021/cr990124y.Search in Google Scholar

38. Hawker, CJ, Bosman, AW, Harth, E. New polymer synthesis by nitroxide mediated Living radical polymerizations. Chem Rev 2001;101:3661–88. https://doi.org/10.1021/cr990119u.Search in Google Scholar

39. Diehl, C, Laurino, P, Azzouz, N, Seeberger, PH. Accelerated continuous flow RAFT polymerization. Macromolecules 2010;43:10311–4. https://doi.org/10.1021/ma1025253.Search in Google Scholar

40. Allan, LEN, Perry, MR, Shaver, MP. Organometallic mediated radical polymerization. Prog Polym Sci 2012;37:127–56. https://doi.org/10.1016/j.progpolymsci.2011.07.004.Search in Google Scholar

41. Wang, JS, Matyjaszewski, K. Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 1995;28:7901–10. https://doi.org/10.1021/ma00127a042.Search in Google Scholar

42a). Matyjaszewski, K, Shipp, DA, Wang, J-L, Grimaud, T, Patten, TE. Utilizing halide exchange to improve control of atom transfer radical polymerization. Macromolecules 1998;31:6836–40. https://doi.org/10.1021/ma980476r.Search in Google Scholar

b) Kim, D, Do, J, Kim, K, Kim, Y, Lee, H, Seo, B, et al.. Branch-controlled ATRP via sulfoxide chemistry. Macromolecules 2021;54:7716–23. https://doi.org/10.1021/acs.macromol.1c00968.Search in Google Scholar

43. Matyjaszewski, K, Tsarevsky, NV. Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 2014;136:6513–533. https://doi.org/10.1021/ja408069v.Search in Google Scholar

44. Boyer, C, Corrigan, NA, Jung, K, Nguyen, D, Nguyen, TK, Adnan, M, et al.. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem Rev 2016;116:1803–949. https://doi.org/10.1021/acs.chemrev.5b00396.Search in Google Scholar

45. Patten, TE, Matyjaszewski, K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 1998;10:901–15. https://doi.org/10.1002/(sici)1521-4095(199808)10:12<901::aid-adma901>3.0.co;2-b.10.1002/(SICI)1521-4095(199808)10:12<901::AID-ADMA901>3.0.CO;2-BSearch in Google Scholar

46. Pintauer, T, Matyjaszewski, K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem Soc Rev 2008;37:1087–109. https://doi.org/10.1039/b714578k.Search in Google Scholar PubMed

47. Matyjaszewski, K. Atom transfer radical polymerization: from mechanisms to applications. Isr J Chem 2012;52:206–20. https://doi.org/10.1002/ijch.201100101.Search in Google Scholar

48. Coessens, V, Pintauer, T, Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog Polym Sci 2001;26:337–77. https://doi.org/10.1016/s0079-6700(01)00003-x.Search in Google Scholar

49. Sheiko, SS, Sumerlin, BS, Matyjaszewsk, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 2008;33:759–85. https://doi.org/10.1016/j.progpolymsci.2008.05.001.Search in Google Scholar

50. Oh, JK, Drumright, R, Siegwart, DJ, Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008;33:448–77. https://doi.org/10.1016/j.progpolymsci.2008.01.002.Search in Google Scholar

51. Shipp, DA, Matyjaszewski, K. Kinetic analysis of controlled/“living” radical polymerizations by simulations. 1. The importance of diffusion-controlled reactions. Macromolecules 2000;33:1553–9. https://doi.org/10.1021/ma991651m.Search in Google Scholar

52. Braunecker, WA, Tsarevsky, NV, Gennaro, A, Matyjaszewski, K. Thermodynamic components of the atom transfer radical polymerization equilibrium: quantifying solvent effects. Macromolecules 2009;42:6348–60. https://doi.org/10.1021/ma901094s.Search in Google Scholar

53. Tang, W, Tsarevsky, NV, Matyjaszewski, K. Determination of equilibrium constants for atom transfer radical polymerization. J Am Chem Soc 2006;128:1598–604. https://doi.org/10.1021/ja0558591.Search in Google Scholar PubMed

54. Matyjaszewski, K, Patten, TE, Xia, J. Controlled/“living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc 1997;119:674–80. https://doi.org/10.1021/ja963361g.Search in Google Scholar

55. Ohno, K, Tsujii, Y, Miyamoto, T, Fukuda, T, Goto, M, Kobayashi, K, et al.. Synthesis of a well-defined glycopolymer by nitroxide-controlled free radical polymerization. Macromolecules 1998;31:1064–9. https://doi.org/10.1021/ma971329g.Search in Google Scholar

56. Zhang, H, Klumperman, B, Ming, W, Fischer, H, Linde, R. Effect of Cu(II) on the kinetics of the homogeneous atom transfer radical polymerization of methyl methacrylate. Macromolecules 2001;34:6169–73. https://doi.org/10.1021/ma0104736.Search in Google Scholar

57. Gillies, MB, Matyjaszewski, K, Norrby, P-O, Pintauer, T, Poli, R, Richard, P. A DFT study of R−X bond dissociation enthalpies of relevance to the initiation process of atom transfer radical polymerization. Macromolecules 2003;36:8551–9. https://doi.org/10.1021/ma0351672.Search in Google Scholar

58. Guliashvili, T, Percec, V. A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET-LRP of vinyl monomers. J Polym Sci A Polym Chem 2007;45:1607–18. https://doi.org/10.1002/pola.21927.Search in Google Scholar

59. Lin, CY, Coote, ML, Gennaro, A, Matyjaszewski, K. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. J Am Chem Soc 2008;130:12762–774. https://doi.org/10.1021/ja8038823.Search in Google Scholar PubMed

60. Lin, CY, Marque, SRA, Matyjaszewski, K, Coote, ML. Linear-free energy relationships for modeling structure–reactivity trends in controlled radical polymerization. Macromolecules 2011;44:7568–83. https://doi.org/10.1021/ma2014996.Search in Google Scholar

61. Wang, JL, Grimaud, T, Matyjaszewski, K. Kinetic study of the homogeneous atom transfer radical polymerization of methyl methacrylate. Macromolecules 1997;30:6507–12. https://doi.org/10.1021/ma970636j.Search in Google Scholar

62. Pintauer, T, Zhou, P, Matyjaszewski, K. General method for determination of the activation, deactivation, and initiation rate constants in transition metal-catalyzed atom transfer radical processes. J Am Chem Soc 2002;124:8196–7. https://doi.org/10.1021/ja0265097.Search in Google Scholar PubMed

63. Singleton, DA, Nowlan, DT, Jahed, N, Matyjaszewski, K. Isotope effects and the mechanism of atom transfer radical polymerization. Macromolecules 2003;36:8609–16. https://doi.org/10.1021/ma035310r.Search in Google Scholar

64. Tang, W, Kwak, Y, Braunecker, W, Tsarevsky, NV, Coote, ML, Matyjaszewski, K. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc 2008;130:10702–13. https://doi.org/10.1021/ja802290a.Search in Google Scholar PubMed

65. Seeliger, F, Matyjaszewski, K. Temperature effect on activation rate constants in ATRP: new mechanistic insights into the activation process. Macromolecules 2009;42:6050–5. https://doi.org/10.1021/ma9010507.Search in Google Scholar

66. Alexander, HP, Schneider-Baumann, M, Hiltebrandt, KU, Misske, AM, Barner-Kowollik, C. Global trends for kp? Expanding the frontier of ester side chain topography in acrylates and methacrylates. Macromolecules 2013;46:15–28. https://doi.org/10.1021/ma302319z.Search in Google Scholar

67. Yu, X, Pfaendtner, J, Broadbelt, LJ. Ab initio study of acrylate polymerization reactions: methyl methacrylate and methyl acrylate propagation. J Phys Chem A 2008;112:6772–82. https://doi.org/10.1021/jp800643a.Search in Google Scholar PubMed

68. Coote, ML. Quantum-chemical modeling of free-radical polymerization. Macromol Theory Simul 2009;18:388–400. https://doi.org/10.1002/mats.200900050.Search in Google Scholar

69. Miller, MD, Holder, AJ. A quantum mechanical study of methacrylate free-radical polymerizations. J Phys Chem A 2010;114:10988–96. https://doi.org/10.1021/jp104198p.Search in Google Scholar PubMed

70a). Degirmenci, I, Eren, S, Aviyente, V, Sterck, B, Hemelsoet, K, Speybroeck, VV, et al.. Modeling the solvent effect on the tacticity in the free radical polymerization of methyl methacrylate. Macromolecules 2010;43:5602–10. https://doi.org/10.1021/ma100608g.Search in Google Scholar

b) Krys, P, Matyjaszewski, K. Kinetics of atom transfer radical polymerization. Eur Polym J 2017;89:482–523. https://doi.org/10.1016/j.eurpolymj.2017.02.034.Search in Google Scholar

71a). Matyjaszewski, K. Mechanistic and synthetic aspects of atom transfer radical polymerization. J Macromol Sci – Pure Appl Chem 1997;34:1785–801. https://doi.org/10.1080/10601329708010308.Search in Google Scholar

b) Dworakowska, S, Lorandi, F, Gorczynski, A, Matyjaszewski, K. Toward green atom transfer radical polymerization: current status and future challenges. Adv Sci 2022;9:2106076–115. https://doi.org/10.1002/advs.202106076.Search in Google Scholar PubMed PubMed Central

72. Lorandi, F, Fantin, M, Matyjaszewski, K. Atom transfer radical polymerization: a mechanistic perspective. J Am Chem Soc 2022;144:15413–30. https://doi.org/10.1021/jacs.2c05364.Search in Google Scholar PubMed

73. Matyjaszewski, K. The importance of exchange reactions in controlled/living radical polymerization in the presence of alkoxyamines and transition metals. Macromol Symp 1996;111:47–61. https://doi.org/10.1002/masy.19961110107.Search in Google Scholar

74. Kajiwara, A, Matyjaszewski, K, Kamachi, M. Simultaneous EPR and kinetic study of styrene atom transfer radical polymerization (ATRP). Macromolecules 1998;31:5695–701. https://doi.org/10.1021/ma980475z.Search in Google Scholar

75. Barner-Kowollik, C, Beuermann, S, Buback, M, Castignolles, P, Charleux, B, Coote, ML, et al.. Critically evaluated rate coefficients in radical polymerization-7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk. Polym Chem 2014;5:204–12. https://doi.org/10.1039/c3py00774j.Search in Google Scholar

76. Speybroeck, VV, Neck, DV, Waroquier, M, Wauters, S, Saeys, M, Marin, GB. Ab Initio study of radical addition reactions: addition of a primary ethylbenzene radical to ethene (I). J Phys Chem A 2000;104:10939–50. https://doi.org/10.1021/jp002172o.Search in Google Scholar

77. Qiu, J, Matyjaszewski, K. Polymerization of substituted styrenes by atom transfer radical polymerization. Macromolecules 1997;30:5643–8. https://doi.org/10.1021/ma9704222.Search in Google Scholar

78. Wang, J-L, Grimaud, T, Shipp, DA, Matyjaszewski, K. Controlled/“living” atom transfer radical polymerization of methyl methacrylate using various initiation systems. Macromolecules 1998;31:1527–34. https://doi.org/10.1021/ma971298p.Search in Google Scholar

79. Mori, H, Muller, AHE. New polymeric architectures with (meth)acrylic acid segments. Prog Polym Sci 2003;28:1403–39. https://doi.org/10.1016/s0079-6700(03)00076-5.Search in Google Scholar

80. Neugebauer, D, Matyjaszewski, K. Copolymerization of N,N-dimethylacrylamide with n-butyl acrylate via atom transfer radical polymerization. Macromolecules 2003;36:2598–603. https://doi.org/10.1021/ma025883o.Search in Google Scholar

81. Tsarevsky, NV, Braunecker, WA, Brooks, SJ, Matyjaszewski, K. Rational selection of initiating/catalytic systems for the copper-mediated atom transfer radical polymerization of basic monomers in protic media: ATRP of 4-Vinylpyridine. Macromolecules 2006;39:6817–24. https://doi.org/10.1021/ma0609937.Search in Google Scholar

82. Matyjaszewski, K, Jo, SM, Paik, H-J, Gaynor, SG. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization. Macromolecules 1997;30:6398–400. https://doi.org/10.1021/ma9706384.Search in Google Scholar

83. Tang, H, Radosz, M, Shen, Y. Atom transfer radical polymerization and copolymerization of vinyl acetate catalyzed by copper halide/terpyridine. AIChE J 2009;55:737–46. https://doi.org/10.1002/aic.11706.Search in Google Scholar

84. Percec, V, Popov, AV, Ramirez-Castillo, E, Coelho, J, Hinojosa-Falcon, LA. Non-transition metal-catalyzed living radical polymerization of vinyl chloride initiated with iodoform in water at 25 ˚C. J Polym Sci A Polym Chem 2005;43:2276–80. https://doi.org/10.1002/pola.20654.Search in Google Scholar

85. Coca, S, Jasieczek, CB, Beers, KL, Matyjaszewski, K. Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate. J Polym Sci A Polym Chem 1998;36:1417–24. https://doi.org/10.1002/(sici)1099-0518(19980715)36:9<1417::aid-pola9>3.0.co;2-p.10.1002/(SICI)1099-0518(19980715)36:9<1417::AID-POLA9>3.0.CO;2-PSearch in Google Scholar

86. Muhlebach, A, Gaynor, SG, Matyjaszewski, K. Synthesis of amphiphilic block copolymers by atom transfer radical polymerization (ATRP). Macromolecules 1998;31:6046–52. https://doi.org/10.1021/ma9804747.Search in Google Scholar

87. Matyjaszewski, K, Coca, S, Jasieczek, CB. Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate. Macromol Chem Phys 1997;198:4011–7. https://doi.org/10.1002/macp.1997.021981219.Search in Google Scholar

88. Davis, KA, Matyjaszewski, K. Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers. Macromolecules 2000;33:4039–47. https://doi.org/10.1021/ma991826s.Search in Google Scholar

89. Queffelec, J, Gaynor, SG, Matyjaszewski, K. Optimization of atom transfer radical polymerization using Cu(I)/Tris(2-(dimethylamino)ethyl)amine as a catalyst. Macromolecules 2000;33:8629–39. https://doi.org/10.1021/ma000871t.Search in Google Scholar

90. Ando, T, Kamigaito, M, Sawamoto, M. Design of initiators for living radical polymerization of methyl methacrylate mediated by ruthenium(II) complex. Tetrahedron 1997;53:15445–57. https://doi.org/10.1016/s0040-4020(97)00972-1.Search in Google Scholar

91. Destarac, M, Matyjaszewski, K, Boutevin, B. Polychloroalkane initiators in copper‐catalyzed atom transfer radical polymerization of (meth)acrylates. Macromol Chem Phys 2000;201:265–72. https://doi.org/10.1002/(sici)1521-3935(20000201)201:2<265::aid-macp265>3.0.co;2-a.10.1002/(SICI)1521-3935(20000201)201:2<265::AID-MACP265>3.0.CO;2-ASearch in Google Scholar

92. Tang, W, Matyjaszewski, K. Effects of initiator structure on activation rate constants in ATRP. Macromolecules 2007;40:1858–63. https://doi.org/10.1021/ma062897b.Search in Google Scholar

93. Wang, TL, Liu, YZ, Jeng, BC, Cai, YC. The effect of initiators and reaction conditions on the polymer syntheses by atom transfer radical polymerization. J Polym Res 2005;12:67–75. https://doi.org/10.1007/s10965-004-1874-y.Search in Google Scholar

94. Parvole, J, Laruelle, G, Guimon, C, Francois, J, Billon, L. Initiator-grafted silica particles for controlled free radical polymerization: influence of the initiator structure on the grafting density. Macromol Rapid Commun 2003;24:1074–8. https://doi.org/10.1002/marc.200300035.Search in Google Scholar

95. Kato, M, Kamigaito, M, Sawamoto, M, Higashimura, T. Bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical. Macromolecules 1996;28:1721–3. https://doi.org/10.1021/ma00109a056.Search in Google Scholar

96. Wang, JS, Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 1995;117:5614–5. https://doi.org/10.1021/ja00125a035.Search in Google Scholar

97. Nishikawa, T, Kamigaito, M, Sawamoto, M. Living radical polymerization in water and alcohols: suspension polymerization of methyl methacrylate with RuCl2(PPh3)3 complex. Macromolecules 1999;32:2204–9. https://doi.org/10.1021/ma981483i.Search in Google Scholar

98. Neumann, A, Keul, H, Hocker, H. Atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate with α,α-dichlorotoluene as initiator; a kinetic study. Macromol Chem Phys 2000;201:980–4. https://doi.org/10.1002/1521-3935(20000601)201:9<980::aid-macp980>3.0.co;2-k.10.1002/1521-3935(20000601)201:9<980::AID-MACP980>3.0.CO;2-KSearch in Google Scholar

99. Takahashi, H, Ando, T, Kamigaito, M, Sawamoto, M. Half-metallocene-type ruthenium complexes as active catalysts for living radical polymerization of methyl methacrylate and styrene. Macromolecules 1999;32:3820–3. https://doi.org/10.1021/ma981798y.Search in Google Scholar

100. Min, K, Gao, H, Matyjaszewski, K. Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J Am Chem Soc 2005;127:3825–30. https://doi.org/10.1021/ja0429364.Search in Google Scholar

101. Nájera, MA, Elizalde, LE, Vázquez, Y, Santos, G. Synthesis of random copolymers poly (methylmethacrylate-co-azo monomer) by ATRP-AGET. Macromol Symp 2009;283–84:51–5. https://doi.org/10.1002/masy.200950908.Search in Google Scholar

102. Zhang, Y, Wang, Y, Peng, C, Zhong, M, Zhu, W, Konkolewicz, D, et al.. Copper-mediated CRP of methyl acrylate in the presence of metallic copper: effect of ligand structure on reaction kinetics. Macromolecules 2012;45:78–86. https://doi.org/10.1021/ma201963c.Search in Google Scholar

103. Mosnacek, J, Ilcíkova, M. Photochemically mediated atom transfer radical polymerization of methyl methacrylate using ppm amounts of catalyst. Macromolecules 2012;45:5859–65. https://doi.org/10.1021/ma300773t.Search in Google Scholar

104. Nishikawa, T, Ando, T, Kamigaito, M, Sawamoto, M. Evidence for living radical polymerization of methyl methacrylate with ruthenium complex: effects of protic and radical compounds and reinitiation from the recovered polymers. Macromolecules 1997;30:2244–8. https://doi.org/10.1021/ma961336p.Search in Google Scholar

105. Ando, T, Kato, M, Kamigaito, M, Sawamoto, M. Living radical polymerization of methyl methacrylate with ruthenium complex: formation of polymers with controlled molecular weights and very narrow distributions. Macromolecules 1996;29:1070–2. https://doi.org/10.1021/ma951175+.10.1021/ma951175+Search in Google Scholar

106. Matyjaszewski, K, Wei, M, Xia, J, McDermott, NE. Controlled/“living” radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes. Macromolecules 1997;30:8161–4. https://doi.org/10.1021/ma971010w.Search in Google Scholar

107. Percec, V, Kim, HJ, Barboiu, B. Scope and limitations of functional sulfonyl chlorides as initiators for metal-catalyzed “living” radical polymerization of styrene and methacrylates. Macromolecules 1997;30:8526–8. https://doi.org/10.1021/ma971375g.Search in Google Scholar

108. Percec, V, Barboiu, B, Bera, TK, Sluis, M, Grubbs, RB, Frechet, JMJ. Designing functional aromatic multisulfonyl chloride initiators for complex organic synthesis by living radical polymerization. J Polym Sci, Part A: Polym Chem 2000;38:4776–91. https://doi.org/10.1002/1099-0518(200012)38:1+<4776::aid-pola160>3.0.co;2-5.10.1002/1099-0518(200012)38:1+<4776::AID-POLA160>3.0.CO;2-5Search in Google Scholar

109. Matyjaszewski, K, Paik, H, Zhou, P, Diamanti, SJ. Determination of activation and deactivation rate constants of model compounds in atom transfer radical polymerization. Macromolecules 2001;34:5125–31. https://doi.org/10.1021/ma010185+.10.1021/ma010185+Search in Google Scholar

110. Goto, A, Fukuda, T. Determination of the activation rate constants of alkyl halide initiators for atom transfer radical polymerization. Macromol Rapid Commun 1999;20:633–6. https://doi.org/10.1002/(sici)1521-3927(19991201)20:12<633::aid-marc633>3.0.co;2-2.10.1002/(SICI)1521-3927(19991201)20:12<633::AID-MARC633>3.0.CO;2-2Search in Google Scholar

111. Matyjaszewski, K, Gaynor, S, Wang, J-S. Controlled radical polymerizations: the use of alkyl iodides in degenerative transfer. Macromolecules 1995;28:2093–5. https://doi.org/10.1021/ma00110a050.Search in Google Scholar

112. Ostu, T. Iniferter concept and living radical polymerization. J Polym Sci, Part A: Polym Chem 2000;38:2121–36. https://doi.org/10.1002/(sici)1099-0518(20000615)38:12<2121::aid-pola10>3.0.co;2-x.10.1002/(SICI)1099-0518(20000615)38:12<2121::AID-POLA10>3.0.CO;2-XSearch in Google Scholar

113. Nicolay, R, Kwak, Y, Matyjaszewski, K. Dibromotrithiocarbonate iniferter for concurrent ATRP and RAFT polymerization. Effect of monomer, catalyst, and chain transfer agent structure on the polymerization mechanism. Macromolecules 2008;41:4585–96. https://doi.org/10.1021/ma800539v.Search in Google Scholar

114. Zhang, W, Wang, C, Li, D, Song, Q, Cheng, Z, Zhu, X. Atom transfer radical polymerization of styrene using multifunctional Iniferters reagents as initiators. Macromol Symp 2008;261:23–31. https://doi.org/10.1002/masy.200850104.Search in Google Scholar

115. Cao, J, Chen, J, Zhang, K, Shen, Q, Zhang, Y. A novel Fe catalyst FeCl2·4H2O/hexamethylphosphoric triamide for the ATRP of MMA. Appl Catal A: Gen 2006;311:76–8. https://doi.org/10.1016/j.apcata.2006.06.005.Search in Google Scholar

116. Chen, J, Chu, J, Zhang, K. Atom transfer radical polymerizations of methyl methacrylate catalyzed by EBiB/SnCl2·2H2O(FeCl2·4H2O)/FeCl3·6H2O/MA5-DETA systems. Polymer 2004;45:151–5. https://doi.org/10.1016/j.polymer.2003.10.050.Search in Google Scholar

117. Zhang, L, Cheng, Z, Shi, S, Li, Q, Zhu, X. AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer 2008;49:3054–9. https://doi.org/10.1016/j.polymer.2008.04.057.Search in Google Scholar

118. Khan, MY, Xue, Z, He, D, Noh, SK, Lyoo, WS. Comparative study of a variety of ATRP systems with high oxidation state metal catalyst system. Polymer 2010;51:69–74. https://doi.org/10.1016/j.polymer.2009.11.037.Search in Google Scholar

119. Barre, G, Taton, D, Lastecoueres, D, Vincent, J-M. Closer to the “ideal recoverable catalyst” for atom transfer radical polymerization using a molecular non-fluorous thermomorphic system. J Am Chem Soc 2004;126:7764–5. https://doi.org/10.1021/ja048096a.Search in Google Scholar PubMed

120. Oh, JK, Matyjaszewski, K. Synthesis of poly(2-hydroxyethyl methacrylate) in protic media through atom transfer radical polymerization using activators generated by electron transfer. J Polym Sci, Part A: Polym Chem 2006;44:3787–96. https://doi.org/10.1002/pola.21482.Search in Google Scholar

121. Hu, Z, Shen, X, Qiu, H, Lai, G, Wu, J, Li, W. AGET ATRP of methyl methacrylate with poly (ethylene glycol)(PEG) as solvent and TMEDA as both ligand and reducing agent. Eur Polym J 2009;45:2313–8. https://doi.org/10.1016/j.eurpolymj.2009.05.004.Search in Google Scholar

122. Deoghare, C, Baby, C, Nadkarni, VS, Behera, RN, Chauhan, R. Synthesis, characterization, and computational study of potential itaconimide-based initiators for atom transfer radical polymerization. RSC Adv 2014;4:48163–76. https://doi.org/10.1039/c4ra08981b.Search in Google Scholar

123a) Tsarevsky, NV, Tang, W, Brooks, SJ, Matyjaszewski, K. Factors determining the performance of copper-based atom transfer radical polymerization catalysts and criteria for rational catalyst selection. Am Chem Soc Symp Ser 2006;944:56–70.10.1021/bk-2006-0944.ch005Search in Google Scholar

b) Szczepaniak, G, Jeong, J, Kapil, K, Dadashi-Silab, S, Yerneni, SS, Ratajczyk, P, et al.. Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chem Sci 2022;13:11540–50. https://doi.org/10.1039/d2sc04210j.Search in Google Scholar

124. Kabachii, YA, Kochev, SY, Bronstein, LM, Blagodatskikh, IB, Valetsky, PM. Atom transfer radical polymerization with Ti(III) halides and alkoxides. Polym Bull 2003;50:271–8. https://doi.org/10.1007/s00289-003-0157-9.Search in Google Scholar

125. Grognec, EL, Claverie, J, Poli, R. Radical polymerization of styrene controlled by half-sandwich Mo(III)/Mo(IV) couples: all basic mechanisms are possible. J Am Chem Soc 2001;123:9513–24. https://doi.org/10.1021/ja010998d.Search in Google Scholar

126. Maria, S, Stoffelbach, F, Mata, J, Daran, J-C, Richard, P, Poli, R. The radical trap in Atom transfer radical polymerization need not be thermodynamically stable. A study of the MoX3(PMe3)3 catalysts. J Am Chem Soc 2005;127:5946–56. https://doi.org/10.1021/ja043078e.Search in Google Scholar

127. Kotani, Y, Kamigaito, M, Sawamoto, M. Re(V)-mediated living radical polymerization of styrene: ReO2I(PPh3)2/R−I initiating systems. Macromolecules 1999;32:2420–4. https://doi.org/10.1021/ma981614f.Search in Google Scholar

128. Ando, T, Kamigaito, M, Sawamoto, M. Iron(II) chloride complex for living radical polymerization of methyl methacrylate. Macromolecules 1997;30:4507–10. https://doi.org/10.1021/ma961478j.Search in Google Scholar

129. Teodorescu, M, Gaynor, SG, Matyjaszewski, K. Halide anions as ligands in iron-mediated atom transfer radical polymerization. Macromolecules 2000;33:2335–9. https://doi.org/10.1021/ma991652e.Search in Google Scholar

130. Uchiike, C, Ouchi, M, Ando, T, Kamigaito, M, Sawamoto, M. Evolution of iron catalysts for effective living radical polymerization: P–N chelate ligand for enhancement of catalytic performances. J Polym Sci, Part A: Polym Chem 2008;46:6819–27. https://doi.org/10.1002/pola.22990.Search in Google Scholar

131. Simal, F, Demonceau, A, Noels, AF. Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers. Angew Chem Int Ed 1999;38:538–40. https://doi.org/10.1002/(sici)1521-3773(19990215)38:4<538::aid-anie538>3.0.co;2-w.10.1002/(SICI)1521-3773(19990215)38:4<538::AID-ANIE538>3.0.CO;2-WSearch in Google Scholar

132. Braunecker, WA, Itami, Y, Matyjaszewski, K. Osmium-mediated radical polymerization. Macromolecules 2005;38:9402–4. https://doi.org/10.1021/ma051877r.Search in Google Scholar

133. Braunecker, WA, Brown, WC, Morelli, BC, Tang, W, Poli, R, Matyjaszewski, K. Origin of activity in Cu-Ru-and Os-mediated radical polymerization. Macromolecules 2007;40:8576–85. https://doi.org/10.1021/ma702008v.Search in Google Scholar

134. Percec, V, Barboiu, B, Neumann, A, Ronda, JC, Zhao, M. Metal-catalyzed “living” radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis. Macromolecules 1996;29:3665–8. https://doi.org/10.1021/ma960061a.Search in Google Scholar

135. Wang, B, Zhuang, Y, Luo, X, Xu, S, Zhou, X. Controlled/“living” radical polymerization of MMA catalyzed by cobaltocene. Macromolecules 2003;36:9684–6. https://doi.org/10.1021/ma035334y.Search in Google Scholar

136. Granel, C, Dubois, P, Jerome, R, Teyssie, P. Controlled radical polymerization of methacrylic monomers in the presence of a bis (ortho-chelated) arylnickel (II) complex and different activated alkyl halides. Macromolecules 1996;29:8576–82. https://doi.org/10.1021/ma9608380.Search in Google Scholar

137. Uegaki, H, Kotani, Y, Kamigaito, M, Sawamoto, M. Nickel-mediated living radical polymerization of methyl methacrylate. Macromolecules 1997;30:2249–53. https://doi.org/10.1021/ma961367k.Search in Google Scholar

138. Lecomte, P, Drapier, I, Dubois, P, Teyssie, P, Jerome, R. Controlled radical polymerization of methyl methacrylate in the presence of Palladium acetate, triphenylphosphine, and carbon tetrachloride. Macromolecules 1997;30:7631–3. https://doi.org/10.1021/ma970890b.Search in Google Scholar

139. Matyjaszewski, K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chem Eur J 1999;5:3095–102. https://doi.org/10.1002/(sici)1521-3765(19991105)5:11<3095::aid-chem3095>3.0.co;2-#.10.1002/(SICI)1521-3765(19991105)5:11<3095::AID-CHEM3095>3.0.CO;2-#Search in Google Scholar

140. Patten, TE, Matyjaszewski, K. Copper(I)-catalyzed atom transfer radical polymerization. Acc Chem Res 1999;32:895–903. https://doi.org/10.1021/ar9501434.Search in Google Scholar

141. Xia, J, Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands. Macromolecules 1997;30:7697–700. https://doi.org/10.1021/ma971009x.Search in Google Scholar

142. Xia, J, Gaynor, SG, Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature. Macromolecules 1998;31:5958–9. https://doi.org/10.1021/ma980725b.Search in Google Scholar

143. Zhang, L, Xu, Q, Lu, J, Xia, X, Wang, L. ATRP of MMA initiated by 2-bromomethyl-4,5-diphenyloxazole at room temperature and study of fluorescent property. Eur Polym J 2007;43:2718–24. https://doi.org/10.1016/j.eurpolymj.2007.02.032.Search in Google Scholar

144. Zhang, L, Xu, QF, Lu, JM, Li, NJ, Yan, F, Wang, LH. Synthesis, characterization and fluorescence adjustment of well-defined polymethacrylates with pendant π-conjugated benzothiazole via atom transfer radical polymerization (ATRP). Polymer 2009;23:4807–12. https://doi.org/10.1016/j.polymer.2009.08.015.Search in Google Scholar

145. Haddleton, DM, Jasieczek, CB, Hannon, MJ, Shooter, AJ. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper (I) complexes. Macromolecules 1997;30:2190–3. https://doi.org/10.1021/ma961074r.Search in Google Scholar

146. Xue, Z, Linh, NTB, Noh, SK, Lyoo, WS. Phosphorus-containing ligands for Iron(III)-catalyzed atom transfer radical polymerization. Angew Chem Int Ed 2008;47:6426–9. https://doi.org/10.1002/ange.200801647.Search in Google Scholar

147a). Ma, Q, Song, J, Zhang, X, Jiang, Y, Ji, L, Liao, S. Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight. Nat Commun 2021;12:429. https://doi.org/10.1038/s41467-020-20645-8.Search in Google Scholar PubMed PubMed Central

b) Corbin, DA, Miyake, GM. Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP): precision polymer synthesis using organic photoredox catalysis. Chem Rev 2022;122:1830–74. https://doi.org/10.1021/acs.chemrev.1c00603.Search in Google Scholar PubMed PubMed Central

148. Moineau, G, Dubois, P, Jerome, R, Senninger, T, Teyssie, P. Alternative atom transfer radical polymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: an easy way to well-controlled PMMA. Macromolecules 1998;31:545–7. https://doi.org/10.1021/ma971132o.Search in Google Scholar

149. Jakubowski, W, Matyjaszewski, K. Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005;38:4139–46. https://doi.org/10.1021/ma047389l.Search in Google Scholar

150. Luo, R, Sen, A. Electron-transfer-induced iron-based atom transfer radical polymerization of styrene derivatives and copolymerization of styrene and methyl methacrylate. Macromolecules 2008;41:4514–8. https://doi.org/10.1021/ma702851r.Search in Google Scholar

151. Min, K, Jakubowski, W, Matyjaszewski, K. AGET ATRP in the presence of air in miniemulsion and in bulk. Macromol Rapid Commun 2006;27:594–8. https://doi.org/10.1002/marc.200600060.Search in Google Scholar

152. Oh, JK, Min, K, Matyjaszewski, K. Preparation of poly(oligo (ethylene glycol) monomethyl ether methacrylate) by homogeneous aqueous AGET ATRP. Macromolecules 2006;39:3161–7. https://doi.org/10.1021/ma060258v.Search in Google Scholar

153. Gnanou, Y, Hizal, G. Effect of phenol and derivatives on atom transfer radical polymerization in the presence of air. J Polym Sci, Part A: Polym Chem 2004;42:351–9. https://doi.org/10.1002/pola.11003.Search in Google Scholar

154. Mert, H, Tunca, U, Hizal, G. Thiophenol derivatives as a reducing agent for in situ generation of Cu(I) species via electron transfer reaction in copper-catalyzed living/controlled radical polymerization of styrene. J Polym Sci, Part A: Polym Chem 2006;44:5923–32. https://doi.org/10.1002/pola.21672.Search in Google Scholar

155. Tang, H, Radosz, M, Shen, Y. CuBr2/N,N,N′,N′-Tetra[(2-pyridal)methyl]ethylenediamine/tertiary amine as a highly active and versatile catalyst for atom-transfer radical polymerization via activator generated by electron transfer. Macromol Rapid Commun 2006;27:1127–31. https://doi.org/10.1002/marc.200600258.Search in Google Scholar

156. Sato, T, Morino, K, Tanaka, H, Ota, T. Radical polymerization of N-phenylitaconimide. Eur Polym J 1989;25:1281–4. https://doi.org/10.1016/0014-3057(89)90094-3.Search in Google Scholar

157. Galanti, MC, Galanti, AV. Kinetic study of the isomerization of itaconic anhydride to citraconic anhydride. J Org Chem 1982;47:1572–4. https://doi.org/10.1021/jo00347a041.Search in Google Scholar

158. Galanti, AV, Keen, BT, Pater, RH, Scola, DA. Mechanism of amine catalyzed isomerization of itaconic anhydride to citraconic anhydride: citraconamic acid formation. J Polym Sci, Polym Chem Ed 1981;19:2243–53. https://doi.org/10.1002/pol.1981.170190910.Search in Google Scholar

159. Galanti, AV, Scola, DA. The synthesis of biscitraconimides and polybiscitraconimides. J Polym Sci, Polym Chem Ed 1981;19:451–75. https://doi.org/10.1002/pol.1981.170190220.Search in Google Scholar

160. Galanti, AV, Iotta, F, Keen, BT, Scole, D. The synthesis of bisitaconamic acids and isomeric bisimide monomers. J Polym Sci, Polym Chem Ed 1982;20:233–9. https://doi.org/10.1002/pol.1982.170200125.Search in Google Scholar

161. Pyriadi, TM, Fraih, M. Synthesis and polymerization of N-Arylitaconimides: free radically and anionic all. J Macromol Sci A-Pure Appl Chem 1982;18:159–72. https://doi.org/10.1080/00222338208074415.Search in Google Scholar

162. Mohamed, NA, Al-Magribi, W. N-(substituted phenyl) itaconimides as organic stabilizers for plasticized poly (vinyl chloride) against thermal degradation. Polym Degrad Stabil 2003;80:275–91. https://doi.org/10.1016/s0141-3910(02)00408-1.Search in Google Scholar

163. Abdel-Naby, AS. Copolymerization of acrylonitrile with N-(substituted phenyl) itaconimide. J Appl Polym Sci 2011;121:169–75. https://doi.org/10.1002/app.33507.Search in Google Scholar

164. Mohamed, NA, Al-Magribi, WM. N-(substituted phenyl) itaconimides as organic stabilizers for rigid poly (vinyl chloride) against thermal degradation. Polym Degrad Stabil 2002;78:149–65. https://doi.org/10.1016/s0141-3910(02)00129-5.Search in Google Scholar

165. Chauhan, R, Choudhary, V. Thermal and mechanical properties of copolymers of methyl methacrylate with N-aryl itaconimides. J Appl Polym Sci 2009;112:1088–95. https://doi.org/10.1002/app.29493.Search in Google Scholar

166. Cowie, JMG, Reid, VMC, Mcewen, IJ. Effect of side chain length on the glass transition of copolymers from styrene with n-alkyl citraconimides and with n-alkyl itaconimides. Br Polym J 1990;23:353–7. https://doi.org/10.1002/pi.1990.4980230403.Search in Google Scholar

167. Matsumoto, A, Umehara, S, Watanabe, H, Otsu, T. Poly(N-n-butylitaconimide). Preparation and characterization. J Polym Sci B Polym Phys 1993;31:527–35. https://doi.org/10.1002/polb.1993.090310503.Search in Google Scholar

168. Mohamed, NA, Al-Magribi, WM. N-(substituted phenyl) itaconimides as organic stabilizers for rigid poly (vinyl chloride) against photo-degradation. Polym Degrad Stab 2007;92:733–40, https://doi.org/10.1016/s0141-3910(03)00194-0.Search in Google Scholar

169. Anand, V, Kumar, R, Choudhary, V. Methyl methacrylate/N-(o-/m-/p-chlorophenyl) itaconimide copolymers: microstructure determination by NMR spectroscopy. J Appl Polym Sci 2004;91:2016–27. https://doi.org/10.1002/app.13429.Search in Google Scholar

170. Grigoras, M, Colotin, G, Antonoaia, NC. Synthesis and polymerization of anthracene-based itaconimides. Polym Int 2004;53:1321–6. https://doi.org/10.1002/pi.1523.Search in Google Scholar

171. Sato, T, Takarada, A, Tanaka, H, Ota, T. Kinetic and ESR studies of the radical-initiated polymerization of N-(2,6-dimethylphenyl)itaconimide. Makromol Chem 1991;192:2231–41. https://doi.org/10.1002/macp.1991.021921004.Search in Google Scholar

172. Chauhan, R, Choudhary, V. Copolymerization of N‐aryl substituted itaconimide with methyl methacrylate: effect of substituents on monomer reactivity ratio and thermal behavior. J Appl Polym Sci 2006;101:2391–8. https://doi.org/10.1002/app.23879.Search in Google Scholar

173. Noble, BB, Coote, ML. First principles modelling of free-radical polymerisation kinetics. Int Rev Phys Chem 2013;32:467–513. https://doi.org/10.1080/0144235x.2013.797277.Search in Google Scholar

174. Hill, DJ, O’Donnell, JH, O’Sullivan, PW. Methyl methacrylate-chloroprene copolymerization: an evaluation of copolymerization models. Polymer 1984;25:569–73. https://doi.org/10.1016/0032-3861(84)90221-0.Search in Google Scholar

175. Burke, AL, Duever, TA, Penlidis, A. Discriminating between the terminal and penultimate models using designed experiments: an overview. Ind Eng Chem Res 1997;36:1016–35. https://doi.org/10.1021/ie960084d.Search in Google Scholar

176. Burke, AL, Duever, TA, Penlidis, A. Model discrimination via designed experiments: discriminating between the terminal and penultimate models on the basis of composition data. Macromolecules 1994;27:386–99. https://doi.org/10.1021/ma00080a011.Search in Google Scholar

177. Kaim, A, Oracz, P. Penultimate model in the study of the ‘bootstrap’ effect in the methyl methacrylate-acrylamide copolymerization system. Polymer 1997;38:2221–8. https://doi.org/10.1016/s0032-3861(96)00762-8.Search in Google Scholar

178. Kaim, A, Oracz, P. Statistical approach to model discrimination for the radical copolymerization of methyl methacrylate and styrene from a posteriori data of composition. E-Polymers 2003;23:1–10. https://doi.org/10.1515/epoly.2003.3.1.303.Search in Google Scholar

179. Deb, PC. Non-uniqueness of penultimate model reactivity ratios and treatment of kinetic data. Polymer 2005;46:6235–42. https://doi.org/10.1016/j.polymer.2005.03.119.Search in Google Scholar

180. Bulai, A, Jimeno, ML, Roman, JS. Stereochemical structure of poly(cyclohexyl acrylate) studied by one-dimensional and two-dimensional 13C-1H spectroscopy. Macromolecules 1995;28:7363–9. https://doi.org/10.1021/ma00126a013.Search in Google Scholar

181. Brar, AS, Malhotra, M. Microstructure of vinylidene chloride-ethyl acrylate copolymers by one- and two-dimensional NMR spectroscopy. J Appl Polym Sci 1998;67:417–26. https://doi.org/10.1002/(sici)1097-4628(19980118)67:3<417::aid-app4>3.0.co;2-p.10.1002/(SICI)1097-4628(19980118)67:3<417::AID-APP4>3.0.CO;2-PSearch in Google Scholar

182. Tonelli, EA, Schilling, FC. Carbon-13 NMR chemical shifts and the microstructure of polymers. Acc Chem Res 1981;14:233–8. https://doi.org/10.1021/ar00068a002.Search in Google Scholar

183. Bruch, MD. Microstructure analysis of poly(ethylene-co-vinyl alcohol) by two-dimensional NMR spectroscopy. Macromolecules 1988;21:2707–13. https://doi.org/10.1021/ma00187a010.Search in Google Scholar

184. Bruch, MD, Bovey, FA, Cais, RE. Microstructure analysis of poly(vinyl fluoride) by fluorine-19 two-dimensional J-correlated NMR spectroscopy. Macromolecules 1984;17:2547–51. https://doi.org/10.1021/ma00142a014.Search in Google Scholar

185. Brar, AS, Dutta, K, Kapur, GS. Complete spectral assignments and microstructures of photopolymerized acrylonitrile/methacrylic acid copolymers by NMR spectroscopy. Macromolecules 1995;28:8735–41. https://doi.org/10.1021/ma00130a005.Search in Google Scholar

186. Brar, AS, Malhotra, M. Compositional assignments and sequence distribution of vinylidene chloride-methyl acrylate copolymers using one- and two-dimensional NMR spectroscopy. Macromolecules 1996;29:7470–6. https://doi.org/10.1021/ma960363c.Search in Google Scholar

187. Hijangos, C, Lopez, D. Compositional assignments for chemically modified PVC by two-dimensional NMR spectroscopy. Macromolecules 1995;28:1364–9. https://doi.org/10.1021/ma00109a006.Search in Google Scholar

188. Dube, M, Sanyer, RA, Penlidis, A, O’Driscoll, KF, Reilley, PM. A microcomputer program for estimation of copolymerization reactivity ratios. J Polym Sci, Part A: Polym Chem 1991;29:703–8. https://doi.org/10.1002/pola.1991.080290512.Search in Google Scholar

189. Chauhan, R, Choudhary, V. Microstructure determination of methyl methacrylate-N-arylsubstituted itaconimide copolymers by NMR spectroscopy. J Appl Polym Sci 2010;115:491–7. https://doi.org/10.1002/app.30824.Search in Google Scholar

190. Deoghare, C, Srivastava, H, Behera, RN, Chauhan, R. Microstructure analysis of copolymers of substituted itaconimide and methyl methacrylate: experimental and computational investigation. J Polym Res 2019;26:204–19. https://doi.org/10.1007/s10965-019-1853-y.Search in Google Scholar

191. Gacal, B, Durmaz, H, Tasdelen, MA, Hizal, G, Tunca, U, Yagci, Y, et al.. Anthracene-maleimide-based Diels-Alder “Click Chemistry” as a novel route to graft copolymers. Macromolecules 2006;39:5330–6. https://doi.org/10.1021/ma060690c.Search in Google Scholar

192. Butz, S, Baethge, H, Schmidt-Naake, G. N-oxyl mediated free radical donor-acceptor co- and terpolymerization of styrene, cyclic maleimide monomers and n-butyl methacrylate. Macromol Chem Phys 2000;16:2143–51. https://doi.org/10.1002/1521-3935(20001101)201:16<2143::aid-macp2143>3.0.co;2-t.10.1002/1521-3935(20001101)201:16<2143::AID-MACP2143>3.0.CO;2-TSearch in Google Scholar

193. Liu, Q, Chen, Y. One‐pot approach to synthesize star‐shaped polystyrenes via RAFT‐mediated radical copolymerization. Macromol Chem Phys 2007;208:2455–62. https://doi.org/10.1002/macp.200700218.Search in Google Scholar

194. Weiss, J, Li, A, Wischerhoff, E, Laschewsky, A. Water-soluble random and alternating copolymers of styrene monomers with adjustable lower critical solution temperature. Polym Chem 2012;3:352–61. https://doi.org/10.1039/c1py00422k.Search in Google Scholar

195. Wei, J, Zhu, Z, Huang, J. Controlled radical alternating copolymerization of N-phenyl maleimide with ethyl α-ethylacrylate by reversible addition fragmentation chain-transfer process. J Appl Polym Sci 2004;94:2376–82. https://doi.org/10.1002/app.21154.Search in Google Scholar

196. Weiss, J, Laschewsky, A. One-step synthesis of amphiphilic, double thermoresponsive diblock copolymers. Macromolecules 2012;45:4158–65. https://doi.org/10.1021/ma300285y.Search in Google Scholar

197. Satoh, K, Matsuda, M, Nagai, K, Kamigaito, M. AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J Am Chem Soc 2010;132:10003–5. https://doi.org/10.1021/ja1042353.Search in Google Scholar

198. Yang, P, Ratcliffe, LPD, Armes, SP. Efficient synthesis of poly(methacrylic acid)-block-poly(styrene-alt-N-phenylmaleimide) diblock copolymer lamellae using RAFT dispersion polymerization. Macromolecules 2013;46:8545–56. https://doi.org/10.1021/ma401797a.Search in Google Scholar

199. Robin, MP, Osborne, SAM, Pikramenou, Z, Raymond, JE, O’Reilly. Fluorescent block copolymer micelles that can self-report on their assembly and small molecule encapsulation. Macromolecules 2016;49:653–62. https://doi.org/10.1021/acs.macromol.5b02152.Search in Google Scholar

200. Berthet, MA, Zarafshani, Z, Pfeifer, S, Lutz, JF. Facile synthesis of functional periodic copolymers: a step toward polymer-based molecular arrays. Macromolecules 2010;43:44–50. https://doi.org/10.1021/ma902075q.Search in Google Scholar

201. Lutz, JF, Schmidt, BVKJ, Pfeifer, S. Tailored polymer microstructures prepared by atom transfer radical copolymerization of styrene and N-substituted maleimides. Macromol Rapid Commun 2011;32:127–35. https://doi.org/10.1002/marc.201000664.Search in Google Scholar

202. Chen, GQ, Wu, ZQ, Wu, JR, Li, ZC, Li, FM. Synthesis of alternating copolymers of N-substituted maleimides with styrene via atom transfer radical polymerization. Macromolecules 2000;33:232–4. https://doi.org/10.1021/ma991047b.Search in Google Scholar

203. Cakir, T, Serhatli, IE, Onen, A. Graft copolymerization of methyl methacrylate with N‐substituted maleimide‐styrene copolymer by ATRP. J Am Chem Soc 2006;99:1993–2001. https://doi.org/10.1002/app.22013.Search in Google Scholar

204. Cao, Y, Hong, Y, Zhai, G, Zhang, D, Song, Y, Yu, Q, et al.. Facile synthesis and characterization of star-shaped polystyrene: self-condensing atom transfer radical copolymerization of N-[4-(α-bromoisobutyryloxy)phenyl]maleimide and styrene. Polym Int 2008;57:1090–100. https://doi.org/10.1002/pi.2446.Search in Google Scholar

205. Qiang, R, Fanghong, G, Bibiao, J, Dongliang, Z, Jianbo, F, Fudi, G. Preparation of hyperbranched copolymers of maleimide inimer and styrene by ATRP. Polymer 2006;47:3382–9. https://doi.org/10.1016/j.polymer.2006.02.092.Search in Google Scholar

206. Jiang, X, Yan, D, Zhong, Y, Liu, W, Chen, Q. Atom transfer radical copolymerization of methyl methacrylate with N‐cyclohexylmaleimide. Polym Int 2000;49:893–7. https://doi.org/10.1002/1097-0126(200008)49:8<893::aid-pi516>3.0.co;2-a.10.1002/1097-0126(200008)49:8<893::AID-PI516>3.0.CO;2-ASearch in Google Scholar

207. Mantovani, G, Lecolley, F, Tao, L, Haddleton, DM, Clerx, J, Cornelissen, JLM, et al.. Design and synthesis of N-Maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to PEGylation chemistry. J Am Chem Soc 2010;127:2966–73. https://doi.org/10.1021/ja0430999.Search in Google Scholar

208. Pizarro, GC, Marambio, OG, Jeria-Orell, M, Valdesa, DT, Geckelerb, KE. Self-assembled nanostructures: preparation, characterization, thermal, optical and morphological characteristics of amphiphilic diblock copolymers based on poly(2-hydroxyethyl methacrylate-block-N-phenylmaleimide). Polym Int 2013;62:1528–38. https://doi.org/10.1002/pi.4456.Search in Google Scholar

209. Hagiwara, T, Isono, K, Imamura, S-I, Toyama, S, Hamana, H, Narita, T. Anionic polymerization of N-phenylitaconimide. Macromolecules 1996;29:4473–7. https://doi.org/10.1021/ma951603b.Search in Google Scholar

210. Oishi, T, Onimura, K, Sumida, W, Koyanagi, T, Tsutsumi, H. Asymmetric anionic polymerization of n-diphenyl-methylitaconimide with chiral ligand-organometal complex. Polym Bull 2002;48:317–25. https://doi.org/10.1007/s00289-002-0044-9.Search in Google Scholar

211. Satoh, K, Lee, D-H, Nagai, K, Kamigaito, M. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives. Macromol Rapid Commun 2014;35:161–7. https://doi.org/10.1002/marc.201300638.Search in Google Scholar

212. Deoghare, C, Nadkarni, VS, Behera, RN, Chauhan, R. Synthesis and characterization of copolymers of methyl methacrylate with N-arylitaconimides via AGET-ATRP. J Polym Mater 2017;34:455–66.Search in Google Scholar

213. Deoghare, C, Nadkarni, VS, Behera, RN, Chauhan, R. Copolymers with pendant N-arylimide groups via atom transfer radical polymerization: synthesis, characterization and kinetic study. Polym Sci Ser B 2019;61:170–9. https://doi.org/10.1134/s1560090419020015.Search in Google Scholar

214. Deoghare, C. Thermally stable copolymers with pendant “N-arylimide” groups via reversible deactivation radical polymerization technique. ECS Trans 2022;107:18175–87. https://doi.org/10.1149/10701.18175ecst.Search in Google Scholar

215a). Fischer, H, Radom, L. Factors controlling the addition of carbon-centered radicals to alkenes – an experimental and theoretical perspective. Angew Chem Int Ed 2001;40:1340–71.10.1002/1521-3773(20010417)40:8<1340::AID-ANIE1340>3.0.CO;2-#Search in Google Scholar

b) Stewart, M, Yu, LJ, Sherburn, MS, Coote, ML. Computational design of next generation atom transfer radical polymerization ligands. Polym Chem 2022;13:1067–74. https://doi.org/10.1039/d1py01716k.Search in Google Scholar

216. Mavroudakis, E, Cuccato, D, Moscatelli, D. On the use of quantum chemistry for the determination of propagation, copolymerization, and secondary reaction kinetics in free radical polymerization. Polymers 2015;7:1789–819. https://doi.org/10.3390/polym7091483.Search in Google Scholar

217. Rosen, BM, Percec, V. A density functional theory computational study of the role of ligand on the stability of CuI and CuII species associated with ATRP and SET-LRP. J Polym Sci A Polym Chem 2007;45:4950–964. https://doi.org/10.1002/pola.22328.Search in Google Scholar

218. Nguyen, NH, Rosen, BM, Percec, V. Improving the initiation efficiency in the single electron transfer living radical polymerization of methyl acrylate with electronic chain‐end mimics. J Polym Sci A Polym Chem 2011;49:1235–247. https://doi.org/10.1002/pola.24543.Search in Google Scholar

219. Degirmenci, I, Aviyente, V, Speybroeck, V V, Waroquier, M. DFT study on the propagation kinetics of free-radical polymerization of α-substituted acrylates. Macromolecules 2009;42:3033–41. https://doi.org/10.1021/ma802875z.Search in Google Scholar

220. Wang, J, Han, J, Peng, H, Tang, X, Zhu, J, Liao, RZ, et al.. Bromoalkyl ATRP initiator activation by inorganic salts: experiments and computations. Polym Chem 2019;10:2376–86. https://doi.org/10.1039/c9py00113a.Search in Google Scholar

221. Lin, CY, Izgorodina, EI, Coote, ML. First principles prediction of the propagation rate coefficients of acrylic and vinyl esters: are we there yet? Macromolecules 2010;43:553–60. https://doi.org/10.1021/ma902049g.Search in Google Scholar

222. Mavroudakis, E, Liang, K, Moscatelli, D, Hutchinson, RA. A combined computational and experimental study on the free-radical copolymerization of styrene and hydroxyethyl acrylate. Macromol Chem Phys 2012;213:1706–716. https://doi.org/10.1002/macp.201200165.Search in Google Scholar

223. Dossi, M, Storti, G, Moscatelli, D. Quantum chemistry: a powerful tool in polymer reaction engineering. Macromol Symp 2011;302:16–25. https://doi.org/10.1002/masy.201000056.Search in Google Scholar

224. Moscatelli, D, Dossi, M, Cavallotti, C, Storti, G. Density functional theory study of addition reactions of carbon-centered radicals to alkenes. J Phys Chem 2011;115:52–62. https://doi.org/10.1021/jp107619y.Search in Google Scholar PubMed

225. Junkers, T, Koo, SPS, Barner-Kowollik, C. Determination of the propagation rate coefficient of acrylonitrile. Polym Chem 2010;1:438–41. https://doi.org/10.1039/c0py00019a.Search in Google Scholar

226. Cuccato, D, Dossi, M, Moscatelli, D, Storti, G. Quantum chemical investigation of secondary reactions in poly(vinyl chloride) free-radical polymerization. Macromol React Eng 2012;6:330–45. https://doi.org/10.1002/mren.201200010.Search in Google Scholar

227. Fukuda, T, Ma, Y-D, Inagaki, H. Free-radical copolymerization. 3. Determination of rate constants of propagation and termination for styrene/methyl methacrylate system. A critical test of terminal-model kinetics. Macromolecules 1985;18:17–26. https://doi.org/10.1021/ma00143a003.Search in Google Scholar

228. Piton, MC, Winnik, MA, Davis, TP, O’driscoll, KF. Copolymerization kinetics of 4‐methoxystyrene with methyl methacrylate and 4‐methoxystyrene with styrene: a test of the penultimate model. J Polym Sci A Polym Chem 1990;28:2097–106. https://doi.org/10.1002/pola.1990.080280807.Search in Google Scholar

229. Coote, ML, Davis, TP. The mechanism of the propagation step in free-radical copolymerisation. Prog Polym Sci 1999;24:1217–251. https://doi.org/10.1016/s0079-6700(99)00030-1.Search in Google Scholar

230. Deoghare, C. A computational study of homolytic bond dissociation process involved in the initiation process of atom transfer radical polymerization. J Appl Chem 2020;9:638–48.Search in Google Scholar

231. Deoghare, C. Experimental determination of activation rate constant and equilibrium constant for bromo substituted succinimide initiators for an atom transfer radical polymerization process. Pure Appl Chem 2022;94:839–58. https://doi.org/10.1515/pac-2021-2012.Search in Google Scholar

232. Heuts, JPA, Gilbert, RG, Maxwell, IA. Penultimate unit effect in free-radical copolymerization. Macromolecules 1997;30:726–36. https://doi.org/10.1021/ma960704m.Search in Google Scholar

233. Roberts, GE, Coote, ML, Heuts, JPA, Morris, LM, Davis, TP. Radical ring-opening copolymerization of 2-methylene 1,3-dioxepane and methyl methacrylate: experiments originally designed to probe the origin of the penultimate unit effect. Macromolecules 1999;32:1332–40. https://doi.org/10.1021/ma9813587.Search in Google Scholar

234. Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev 2005;105:2999–3093. https://doi.org/10.1021/cr9904009.Search in Google Scholar PubMed

235. Cramer, CJ. Essentials of computational chemistry: theories and models, 2nd ed. England: John Wiley and Sons Ltd.; 2004.Search in Google Scholar

236. Ensing, B, de Vivo, M, Liu, Z, Moore, P, Klein, ML. Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc Chem Res 2006;39:73–81. https://doi.org/10.1002/chin.200617277.Search in Google Scholar

237. Arnaud, R, Subra, R, Barone, V, Lelj, F, Olivella, S, Sole, A, et al.. Ab-initio mechanistic studies of radical reactions. Directive effects in the addition of methyl radical to unsymmetrical fluoroethenes. J Chem Soc, Perkin Trans II 1986;2:1517–524. https://doi.org/10.1039/p29860001517.Search in Google Scholar

238. Stewart, JJP. Optimization of parameters for semi-empirical methods I. Method J Comput Chem 1989;2:209–20. https://doi.org/10.1002/jcc.540100208.Search in Google Scholar

239. Mohr, S, Ratcliff, LE, Boulanger, P, Genovese, L, Caliste, D, Deutsch, T, et al.. Daubechies wavelets for linear scaling density functional theory. J Chem Phys 2014;140:204110–6. https://doi.org/10.1063/1.4871876.Search in Google Scholar PubMed

240. Lieb, EH. Thomas-Fermi and related theories of atoms and molecules. Rev Mod Phys 1981;53:603–41. https://doi.org/10.1103/revmodphys.53.603.Search in Google Scholar

241. Lewars, E. Computational chemistry. Boston, United States: Kluwer Acadamic Publishers; 2003:385–99 pp. Chapter 7.Search in Google Scholar

242. Kohn, W, Shan, LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965;140:A1133–38. https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

243. Yarkony, DR, editor. Modern electronic structure theory, Part I & II. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1995:725–1022 pp.10.1142/1957-part2Search in Google Scholar

244. Jones, RO. Density functional theory: its origins, rise to prominence, and future. Rev Mod Phys 2015;87:897–923. https://doi.org/10.1103/revmodphys.87.897.Search in Google Scholar

245. Montero, LA, Diaz, LA, Bader, R, editors. Introduction to advanced topics of computational chemistry. Havana: Editorial de la Universidad de La Habana; 2003:41–70 pp. Chapter 3.Search in Google Scholar

246. Hill, JG. Gaussian basis sets for molecular applications. Int J Quant Chem 2013;113:21–34. https://doi.org/10.1002/qua.24355.Search in Google Scholar

Received: 2022-12-03
Accepted: 2023-03-23
Published Online: 2023-06-07

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2022-0327/html
Scroll to top button