Startseite Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and properties of AM/AMPS/MMA and cationic monomer copolymer flooding agent

  • Chengcheng Liu , Shibin Wang EMAIL logo , Fei Jia , Bo Zheng , Shuaishuai Li , Yuheng Yang , Yang Gao und Jinzhou Zhao
Veröffentlicht/Copyright: 19. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel hydrophobic association copolymer (PAMA) was synthesized by incorporating acrylamide (AM), 2-acrylamide-2-methylpropanesulfonic acid (AMPS), cationic monomer (MEDDA), and methyl methacrylate (MMA). The properties of MMA copolymers with varying contents were analyzed using infrared spectroscopy, nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Optimal overall performance of the solution was achieved when the MMA content reached 1.4 % w/w. Compared to pure PAAM (without MMA), the PAMA-1.4 % polymer exhibited superior viscoelasticity, temperature resistance, and shear resistance. This enhancement in PAMA performance can be attributed to the significant inhibition of intermolecular water film formation within the polymer matrix by MMA, effectively improving and regulating solution solubility while strengthening molecular chain interactions and enhancing the structural network strength of PAMA polymers. Additionally, the inclusion of MMA transformed rock surfaces from non-wetting to wetting conditions, thereby greatly improving oil displacement efficiency. In displacement experiments, PAMA-1.4 % performed better in terms of enhanced oil recovery, the recovery rate of 0.1 % w/w PAMA-2.4 % solution is only 7.78 %, while the recovery rate of 0.1 % w/w PAMA-1.4 % solution is 13.06 %.


Corresponding author: Shibin Wang, National Key Laboratory of Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, China, E-mail:

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: Chengcheng Liu: Responsible for designing research methods, experimental design, data collection, processing and analysis, and writing the first draft of the paper. Shibin Wang: Responsible for the planning, design and implementation of the entire study. Fei Jia: Participatd in paper writing and revision and provided experimental equipment and technology. Bo Zheng: Participated in paper writing and revision, assisted in data acquisition and processing. Statistical software is used to process and analyze the data to extract key information about the research question. Shuaishuai Li: Responsible for research and review of relevant literature, summarized previous research results, and pointed out the shortcomings of current research. Yuheng Yang: Responsible for the collection of laboratory data, including data from laboratory equipment or external databases. Yang Gao: Participated in paper writing and revision and provided experimental equipment and technology. Jinzhou Zhao: Provided experimental equipment, technology, financial support. All authors have taken full responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state that there is no conflict of interest.

  4. Research funding: Special thanks to the Oil and Gas Field Development Project of the Ministry of Science and Technology of China (2016ZX05021).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Sameer Al-Hajri, B. M. N. M.; Negash, B. M.; Rahman, M. M.; Haroun, M.; Al-Shami, T. M. Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS Omega 2022, 9, 7431–7443; https://doi.org/10.1021/acsomega.1c06739.Suche in Google Scholar PubMed PubMed Central

2. Veerabhadrappa, S. K.; Doda, A.; Trivedi, J. J.; Kuru, E. On the Effect of Polymer Elasticity on Secondary and Tertiary Oil Recovery. Ind. Eng. Chem. Res. 2013, 51, 18421–18428; https://doi.org/10.1021/ie4026456.Suche in Google Scholar

3. Du, J.; Liu, J.; Zhao, L.; Liu, P.; Chen, X.; Wang, Q.; Yu, M. Water-soluble Polymers for High-Temperature Resistant Hydraulic Fracturing: a Review. J. Nat. Gas Sci. Eng. 2022, 104, 104673; https://doi.org/10.1016/j.jngse.2022.104673.Suche in Google Scholar

4. Nascimento, F. P.; Pereira, V. O.; de Jesus, N.; Bastos, L. D. S.; Costa, G. M. N.; Vieira De Melo, S. A. B. Low Salinity Water–Polymer Flooding in Carbonate Oil Reservoirs: a Critical Review. Macromol. React. Eng. 2023, 17, 1; https://doi.org/10.1002/mren.202300007.Suche in Google Scholar

5. Seright, R. S.; Wang, D. Polymer Flooding: Current Status and Future Directions. Pet. Sci. 2023, 2, 910–921; https://doi.org/10.1016/j.petsci.2023.02.002.Suche in Google Scholar

6. Seright, R. S.; Wang, D. Polymer Retention “Tailing” Phenomenon Associated with the Milne Point Polymer Flood. SPE J. 2022, 5, 2863–2881; https://doi.org/10.2118/209354-pa.Suche in Google Scholar

7. Li, X.; Zhang, F.; Liu, G. Review on Polymer Flooding Technology. IOP Conf. Ser.: Earth Environ. Sci. 2021, 675, 12199; https://doi.org/10.1088/1755-1315/675/1/012199.Suche in Google Scholar

8. Ma, X.; Mu, H.; Hu, Y.; Yang, S. Synthesis and Properties of Hydrophobically Associating Polymer Fracturing Fluid. Colloids & Surfaces A: Phys. Eng. Asp. 2021, 1, 127013; https://doi.org/10.1016/j.colsurfa.2021.127013.Suche in Google Scholar

9. Ahmed, M. E.; Sultan, A. S.; Al-Hashim, A. A. H. S. Optimization of Surfactant-Polymer Flooding for Enhanced Oil Recovery. J. Pet. Explor. Prod. Technol. 2023, 10, 2109–2123.10.1007/s13202-023-01651-0Suche in Google Scholar

10. Ren, H.; Ding, X. H.; Luo, Q.; Yang, L. Y.; Yong, X. H.; Wei, Y.; Peng, J.; Deng, Y. Β‐Cyclodextrin‐Functionalized Copolymers Based on Multiple Intermolecular Forces for Enhanced Oil Recovery. Polym. Eng. Sci. 2020, 10, 2581–2592.10.1002/pen.25496Suche in Google Scholar

11. Wang, Y.; Zhang, J.; Yang, S.; Xu, Z.; Cheng, S. Pressure Transient Characteristics of Non-uniform Conductivity Fractured Wells in Viscoelasticity Polymer Flooding Based on Oil-Water Two-phase Flow. Pet. Sci. 2024, 1, 24.10.1016/j.petsci.2023.10.017Suche in Google Scholar

12. Du, J.; Lv, C.; Lan, X.; Song, J.; Liu, P.; Chen, X.; Wang, Q.; Liu, J.; Guo, G. A Review on Viscosity Retention of Pam Solution for Polymer Flooding Technology. Pet. Sci. Technol. 2024, 3, 372–405; https://doi.org/10.1080/10916466.2022.2120011.Suche in Google Scholar

13. Xiangguo, L. U.; Bao, C.; Kun, X.; Weijia, C.; Yigang, L.; Yunbao, Z.; Xiaoyan, W.; Jie, Z. Enhanced Oil Recovery Mechanisms of Polymer Flooding in a Heterogeneous Oil Reservoir. Petroleum Explor. Dev. 2021, 1, 169–178.10.1016/S1876-3804(21)60013-7Suche in Google Scholar

14. Li, J.; Ji, Y.; Ni, X.; Lv, K.; Huang, X.; Sun, J. A Micro-crosslinked Amphoteric Hydrophobic Association Copolymer as High Temperature- and Salt-Resistance Fluid Loss Reducer for Water-Based Drilling Fluids. Pet. Sci. 2024, 1, 21.10.1016/j.petsci.2024.01.021Suche in Google Scholar

15. Pandey, A.; Qamar, S. F.; Das, S.; Basu, S.; Kesarwani, H.; Saxena, A.; Sharma, S.; Sarkar, J. Advanced Multi-Wall Carbon Nanotube-Optimized Surfactant-Polymer Flooding for Enhanced Oil Recovery. Fuel 2024, 355, 129463; https://doi.org/10.1016/j.fuel.2023.129463.Suche in Google Scholar

16. Ramazan, S.; Grigoriy, M.; Eldar, K.; Akhat, B.; Sherniyaz, K.; Saltanat, B.; Ibragim, S. Effect of the Formation of Hydrophilic and Hydrophobic-Hydrophilic Associates on the Behavior of Copolymers of N-Vinylpyrrolidone with Methyl Acrylate in Aqueous Solutions. Polymers 2024, 5, 584.10.3390/polym16050584Suche in Google Scholar PubMed PubMed Central

17. Liu, L.; Zhao, M.; Pi, Y.; Fan, X.; Cheng, G.; Jiang, L. Experimental Study on Enhanced Oil Recovery of the Heterogeneous System after Polymer Flooding. Processes 2023, 10, 2865; https://doi.org/10.3390/pr11102865.Suche in Google Scholar

18. Zhang, R.; Chen, H. Multi-objective Global and Local Surrogate-Assisted Optimization on Polymer Flooding. Fuel 2023, 342, 127678; https://doi.org/10.1016/j.fuel.2023.127678.Suche in Google Scholar

19. Wang, X.; Wang, F.; Zhang, Y.; Ding, X.; Zhang, G.; Zhou, T.; Wang, X.; Zhang, Z. Novel Hydrophobic Associative Copolymers for Natural Gas Hydrate Fracturing Fluids. J. Mol. Liq. 2024, 398, 124192; https://doi.org/10.1016/j.molliq.2024.124192.Suche in Google Scholar

20. Yupeng, W.; Yumin, W.; Yueqin, Y.; Jun, X.; Qingfen, C. Preparation and Characterization of Am/aa/amps/amc14s Copolymer. J. Qingdao Univ. Sci. Technol. 2006, 1, 1–4.Suche in Google Scholar

21. Kang, W. A.; Hou, X. A.; Chen, C. A.; Shao, S. A.; Zhang, X. A.; Zhu, T. A.; Wang, T. A.; Yang, H. A. H. U. Study on Rheological Behavior and Salt-Thickening Mechanism of a Synthesized Twin-Tailed Hydrophobically Modified Polyacrylamide. J. Mol. Liq. 2019, 294, 111619; https://doi.org/10.1016/j.molliq.2019.111619.Suche in Google Scholar

22. Raj, K. A.; Balikram, A.; Ojha, K. Impact Assessment of Nanoparticles on Microstructure and Rheological Behaviour of Ves Fracturing Fluid Formulated with Mixed Surfactant System. J. Mol. Liq. 2022, 345, 118241; https://doi.org/10.1016/j.molliq.2021.118241.Suche in Google Scholar

23. Abdullah, M. M. S.; Alquraishi, A. A.; Allohedan, H. A.; Almansour, A. O.; Atta, A. M. Synthesis of Novel Water Soluble Poly (Ionic Liquids) Based on Quaternary Ammonium Acrylamidomethyl Propane Sulfonate for Enhanced Oil Recovery. J. Mol. Liq. 2017, 223, 508–516; https://doi.org/10.1016/j.molliq.2017.02.113.Suche in Google Scholar

24. Huysecom, A. S.; Glorieux, C.; Thoen, J.; Thielemans, W.; Fustin, C. A.; Moldenaers, P.; Cardinaels, R. Phase Behavior of Medium-Length Hydrophobically Associating Peo-Ppo Multiblock Copolymers in Aqueous Media. J. Colloid Interface Sci. 2023, 641, 521–538; https://doi.org/10.1016/j.jcis.2023.03.013.Suche in Google Scholar PubMed

25. Wu, R.; Zhang, S.; Song, Q.; Tan, Y. Synthesis and Solution Properties of Hydrophobically Associating Water-Soluble Copolymer with Dynamic Covalent Bond. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 648, 1292601; https://doi.org/10.1016/j.colsurfa.2022.129260.Suche in Google Scholar

26. Thomas, C. S.; Elizalde, L. E.; Regalado, E. J. E.; Nez, De J. U.; Festag, G.; Schubert, U. S. Understanding the Influence of Chemical Structure and Length of Hydrophobic Blocks on the Rheological Properties of Associative Copolymers. Eur. Polym. J. 2021, 143, 110190; https://doi.org/10.1016/j.eurpolymj.2020.110190.Suche in Google Scholar

27. Xu, K.; Qin, W.; Liu, F.; Fang, B.; Shi, Y.; Li, Y.; Dong, J.; Yu, L. Preparation and Rheological Properties of Three-Component Hydrophobically Associating Copolymer Emulsion. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 638, 128320; https://doi.org/10.1016/j.colsurfa.2022.128320.Suche in Google Scholar

28. Huiying Zhong, B. S. Y. H.; Shi, B.; Bi, Y.; Zhao, Y.; Xie, K. The Micro-flow Mechanism of Polymer Flooding in Dual Heterogeneous Reservoirs Considering the Wettability. Polymers 2023, 20, 4188; https://doi.org/10.3390/polym15204188.Suche in Google Scholar PubMed PubMed Central

29. Azad, M. S.; Dalsania, Y.; Trivedi, J. J. J. U. Understanding the Flow Behaviour of Copolymer and Associative Polymers in Porous Media Using Extensional Viscosity Characterization: Effect of Hydrophobic Association. Can. J. Chem. Eng. 2018, 11, 2498–2508; https://doi.org/10.1002/cjce.23169.Suche in Google Scholar

30. Guo, Y.; Song, H.; Mohanty, K. A Visualization Study of Low-Tension Polymer Flooding for Viscous Oil Reservoirs. SPE Reserv. Eval. Eng. 2023, 3, 676–691; https://doi.org/10.2118/209466-pa.Suche in Google Scholar

31. Pogrebnyak, V. G.; Shimanskii, V. Y.; Pogrebnyak, A. V.; Perkun, I. V. Viscoelastic Effects under Water-Polymer Flooding Conditions of the Fractured-Porous Reservoir. Nafta - Gaz 2023, 7, 455–463; https://doi.org/10.18668/ng.2023.07.02.Suche in Google Scholar

32. Dai, Y.; Zhang, X.; Liu, S.; Zhang, F.; Zhang, Y.; Sang, Y.; Zheng, J.; Liu, Z.; Zhang, P. Syntheses and Properties of Associative Acrylamide Copolymers Containing Short Hydrophobic Chains Used in a Friction Reducer for Slick-Water Fracturing. Pet. Sci. 2024, 3, 13.10.1016/j.petsci.2024.03.013Suche in Google Scholar

33. Shankar, V.; Zagitov, R.; Shekhar, S.; Gupta, A. K.; Kumar, M. S.; Kumar, R.; Veerbhadrappa, S.; Nakutnyy, P. Evaluation of Atbs Polymers for Mangala Polymer Flood. SPE Reserv. Eval. Eng. 2023, 3, 722–736; https://doi.org/10.2118/211461-pa.Suche in Google Scholar

Received: 2024-04-17
Accepted: 2024-06-16
Published Online: 2024-08-19
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0076/pdf?lang=de
Button zum nach oben scrollen