Startseite Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis

  • Sagar Kumar Nayak EMAIL logo , Debabrata Mohanty und Manas R. Sahu
Veröffentlicht/Copyright: 17. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Thermal interface materials (TIMs) are prerequisite components of micro- and nano-electronics, as well as advanced semiconductor applications. A bisphenol-A epoxy-based thermal adhesive amalgamated graphene oxide (GO), reduced graphene oxide (rGO), and modified hexagonal boron nitride (h-BN/mh-BN) are fabricated. The advantages of adhesive TIMs compared to other TIMs encompass lower cost, process savings, reduced component weight, and prevention of vibration loosening the high-end electronics. Additionally, some parts are not suitable for soldering, as they may lack “legs” that go through holes in the PCBs, and adhesive TIMs help prevent short circuits. The thermal conductivity (TC) is measured at 1.653 ± 0.057 W/mK when incorporating 44.5 wt% mh-BN hybrid rGO into the epoxy matrix. However, substituting rGO with GO reduced the TC to 0.81 ± 0.0289 W/mK due to the lower phonon transfer of GO compared to rGO. The binding strength, in terms of lap shear, of the utmost TC composite adhesive was within the range of 6.26 ± 0.48 MPa, which is acceptable for effective end applications. The thermal stability of both optimized composites (mh-BN/rGO and mh-BN/GO) has demonstrated better results beyond 280 °C. The highest TC epoxy nanocomposite, termed mh-BN/rGO4/epoxy, also revealed electrical insulation properties.


Corresponding author: Sagar Kumar Nayak, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India; and NETZSCH Technologies India, Kolkata, India, E-mail:

Acknowledgments

We have not used any kind of Large Language Models (LLM), such as ChatGPT, Artificial Intelligence (AI) and Machine Learning Tools (MLT) as credited author(s) on a manuscript.

  1. Research ethics: This article is follows all the research ethics and standards, in terms of investigation, analysis and evaluation.

  2. Informed consent: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Author contributions: Sagar Kumar Nayak: conceptualization, methodology, investigation, data curation, writing-original draft preparation. Debabrata Mohanty: conceptualization, supervision, funding acquisition, writing-review and editing. Manas R. Sahu: investigation, data curation, formal analysis, experiment and revision. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: No use of Large Language Models, AI and Machine Learning Tools.

  5. Conflict of interests: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Most of the study does not include raw data. Only two studies have raw data, which may be provided to the reader after knowing the intension and purpose.

References

1. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Chen, B. Prog. Polym. Sci. 2016, 59, 41; https://doi.org/10.1016/j.progpolymsci.2016.03.001.Suche in Google Scholar

2. Han, Z.; Fina, A. Prog. Polym. Sci. 2011, 36, 914; https://doi.org/10.1016/j.progpolymsci.2010.11.004.Suche in Google Scholar

3. Meng, Q.; Han, S.; Araby, S.; Zhao, Y.; Liu, Z.; Lu, S. J. Adhes. Sci. 2019, 33, 1337; https://doi.org/10.1080/01694243.2019.1595890.Suche in Google Scholar

4. Nayak, S. K.; Mohanty, S.; Nayak, S. K. SN Appl. Sci. 2019, 1, 337; https://doi.org/10.1007/s42452-019-0346-2.Suche in Google Scholar

5. Kumar, R.; Mishra, A.; Sahoo, S.; Panda, B. P.; Mohanty, S.; Nayak, S. K. Polym. Adv. Technol. 2019, 30, 1365; https://doi.org/10.1002/pat.4569.Suche in Google Scholar

6. Wang, Z.; Qi, R.; Wang, J.; Qi, S. Ceram. Int. 2015, 41, 13541; https://doi.org/10.1016/j.ceramint.2015.07.148.Suche in Google Scholar

7. Yu, H.; Li, L.; Kido, T.; Xi, G.; Xu, G.; Guo, F. J. Appl. Polym. Sci. 2012, 124, 669; https://doi.org/10.1002/app.35016.Suche in Google Scholar

8. Zhang, L.; Deng, H.; Fu, Q. Comp. Comm. 2018, 8, 74; https://doi.org/10.1016/j.coco.2017.11.004.Suche in Google Scholar

9. Jiang, C.; Zhang, D.; Gan, X.; Xie, R.; Zhang, F.; Zhou, K. Ceram. Int. 2014, 40, 2535; https://doi.org/10.1016/j.ceramint.2013.07.131.Suche in Google Scholar

10. An, F.; Li, X.; Min, P.; Li, H.; Dai, Z.; Yu, Z. Z. Carbon 2018, 126, 119; https://doi.org/10.1016/j.carbon.2017.10.011.Suche in Google Scholar

11. Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y. W. Carbon 2011, 49, 495; https://doi.org/10.1016/j.carbon.2010.09.047.Suche in Google Scholar

12. Kumar, R.; Nayak, S. K.; Sahoo, S.; Panda, B. P.; Mohanty, S.; Nayak, S. K. J. Mater. Sci.: Mater. Electron. 2018, 29, 16932; https://doi.org/10.1007/s10854-018-9788-3.Suche in Google Scholar

13. Huang, T.; Zeng, X.; Yao, Y.; Sun, R.; Meng, F.; Xu, J.; Wong, C. RSC Adv. 2016, 6, 35847; https://doi.org/10.1039/c5ra27315c.Suche in Google Scholar

14. Huang, T.; Zeng, X.; Yao, Y.; Sun, R.; Meng, F.; Xu, J.; Wong, C. RSC Adv. 2017, 7, 23355; https://doi.org/10.1039/c6ra28503a.Suche in Google Scholar

15. Huang, L.; Zhu, P.; Li, G.; Lu, D. D.; Sun, R.; Wong, C. J. Mater. Chem. A 2014, 2, 18246; https://doi.org/10.1039/c4ta03702b.Suche in Google Scholar

16. Wang, Z.; Fu, Y.; Meng, W.; Zhi, C. Nanoscale Res. Lett. 2014, 9, 643; https://doi.org/10.1186/1556-276x-9-643.Suche in Google Scholar PubMed PubMed Central

17. Gerani, K.; Mortaheb, H. R.; Mokhtarani, B. Polym. Plast. Technol. Eng. 2017, 56, 543; https://doi.org/10.1080/03602559.2016.1233260.Suche in Google Scholar

18. Nayak, S. K.; Mohanty, S.; Nayak, S. K. Multiscale Multidiscip, Vol. 3, 2020; p. 103.10.1007/s41939-019-00064-zSuche in Google Scholar

19. Tsai, M. H.; Tseng, I. H.; Chiang, J. C.; Li, J. J. ACS Appl. Mater. Interfaces 2014, 6, 8639; https://doi.org/10.1021/am501323m.Suche in Google Scholar PubMed

20. Singh, A. K.; Panda, B. P.; Mohanty, S.; Nayak, S. K.; Gupta, M. K. Study on Metal Decorated Oxidized Multiwalled Carbon Nanotube (MWCNT)—Epoxy Adhesive for Thermal Conductivity Applications. J. Mater. Sci.: Mater. Electron. 2017, 28, 8908–8920; https://doi.org/10.1007/s10854-017-6621-3.Suche in Google Scholar

21. Kumar, R.; Nayak, S. K.; Sahoo, S.; Panda, B. T.; Mohanty, S.; Nayak, S. K. Study on Thermal Conductive Epoxy Adhesive Based on Adopting Hexagonal Boron Nitride/Graphite Hybrids. J. Mater. Sci.: Mater. Electron. 2018, 29, 16932–16938; https://doi.org/10.1007/s10854-018-9788-3.Suche in Google Scholar

22. Nayak, S. K.; Mohanty, D. J. Adhes. Sci. 2020, 34, 1507. https://doi.org/10.1007/978-981-13-2568-7_9.Suche in Google Scholar

23. Shen, Y.; Jing, T.; Ren, W.; Zhang, J.; Jiang, Z. G.; Yu, Z. Z.; Dasari, A. Compos. Sci. Technol. 2012, 72, 1430; https://doi.org/10.1016/j.compscitech.2012.05.018.Suche in Google Scholar

24. Kumar, R.; Nayak, S. K. J. Mater. Sci.: Mater. Electron. 2020, 31, 16008; https://doi.org/10.1007/s10854-020-04163-3.Suche in Google Scholar

25. Nayak, S. K.; Mishra, A.; Pradhan, S. S.; Agarwal, J. High Perform. Polym. 2021, 33, 127; https://doi.org/10.1177/0954008320945383.Suche in Google Scholar

26. Yazdani, H.; Morshedian, J.; Khonakdar, H. A. Polym. Compos. 2006, 27, 491; https://doi.org/10.1002/pc.20217.Suche in Google Scholar

27. Nayak, S. K.; Mohanty, S.; Nayak, S. K. J. Electron. Mater. 2020, 49, 34; https://doi.org/10.1007/s11664-019-07753-y.Suche in Google Scholar

28. Zhang, Y.; Tuo, R.; Yang, W.; Wu, J.; Zhu, J.; Zhang, C.; Bian, X. Improved Thermal and Electrical Properties of Epoxy Resin Composites by Dopamine and Silane Coupling Agent Modified Hexagonal BN. Polym. Compos. 2020, 41 (11), 4727–4739; https://doi.org/10.1002/pc.25746.Suche in Google Scholar

Received: 2024-01-03
Accepted: 2024-08-12
Published Online: 2024-10-17
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0300/html
Button zum nach oben scrollen