Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis
Abstract
Thermal interface materials (TIMs) are prerequisite components of micro- and nano-electronics, as well as advanced semiconductor applications. A bisphenol-A epoxy-based thermal adhesive amalgamated graphene oxide (GO), reduced graphene oxide (rGO), and modified hexagonal boron nitride (h-BN/mh-BN) are fabricated. The advantages of adhesive TIMs compared to other TIMs encompass lower cost, process savings, reduced component weight, and prevention of vibration loosening the high-end electronics. Additionally, some parts are not suitable for soldering, as they may lack “legs” that go through holes in the PCBs, and adhesive TIMs help prevent short circuits. The thermal conductivity (TC) is measured at 1.653 ± 0.057 W/mK when incorporating 44.5 wt% mh-BN hybrid rGO into the epoxy matrix. However, substituting rGO with GO reduced the TC to 0.81 ± 0.0289 W/mK due to the lower phonon transfer of GO compared to rGO. The binding strength, in terms of lap shear, of the utmost TC composite adhesive was within the range of 6.26 ± 0.48 MPa, which is acceptable for effective end applications. The thermal stability of both optimized composites (mh-BN/rGO and mh-BN/GO) has demonstrated better results beyond 280 °C. The highest TC epoxy nanocomposite, termed mh-BN/rGO4/epoxy, also revealed electrical insulation properties.
Acknowledgments
We have not used any kind of Large Language Models (LLM), such as ChatGPT, Artificial Intelligence (AI) and Machine Learning Tools (MLT) as credited author(s) on a manuscript.
-
Research ethics: This article is follows all the research ethics and standards, in terms of investigation, analysis and evaluation.
-
Informed consent: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Author contributions: Sagar Kumar Nayak: conceptualization, methodology, investigation, data curation, writing-original draft preparation. Debabrata Mohanty: conceptualization, supervision, funding acquisition, writing-review and editing. Manas R. Sahu: investigation, data curation, formal analysis, experiment and revision. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: No use of Large Language Models, AI and Machine Learning Tools.
-
Conflict of interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Most of the study does not include raw data. Only two studies have raw data, which may be provided to the reader after knowing the intension and purpose.
References
1. Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Chen, B. Prog. Polym. Sci. 2016, 59, 41; https://doi.org/10.1016/j.progpolymsci.2016.03.001.Suche in Google Scholar
2. Han, Z.; Fina, A. Prog. Polym. Sci. 2011, 36, 914; https://doi.org/10.1016/j.progpolymsci.2010.11.004.Suche in Google Scholar
3. Meng, Q.; Han, S.; Araby, S.; Zhao, Y.; Liu, Z.; Lu, S. J. Adhes. Sci. 2019, 33, 1337; https://doi.org/10.1080/01694243.2019.1595890.Suche in Google Scholar
4. Nayak, S. K.; Mohanty, S.; Nayak, S. K. SN Appl. Sci. 2019, 1, 337; https://doi.org/10.1007/s42452-019-0346-2.Suche in Google Scholar
5. Kumar, R.; Mishra, A.; Sahoo, S.; Panda, B. P.; Mohanty, S.; Nayak, S. K. Polym. Adv. Technol. 2019, 30, 1365; https://doi.org/10.1002/pat.4569.Suche in Google Scholar
6. Wang, Z.; Qi, R.; Wang, J.; Qi, S. Ceram. Int. 2015, 41, 13541; https://doi.org/10.1016/j.ceramint.2015.07.148.Suche in Google Scholar
7. Yu, H.; Li, L.; Kido, T.; Xi, G.; Xu, G.; Guo, F. J. Appl. Polym. Sci. 2012, 124, 669; https://doi.org/10.1002/app.35016.Suche in Google Scholar
8. Zhang, L.; Deng, H.; Fu, Q. Comp. Comm. 2018, 8, 74; https://doi.org/10.1016/j.coco.2017.11.004.Suche in Google Scholar
9. Jiang, C.; Zhang, D.; Gan, X.; Xie, R.; Zhang, F.; Zhou, K. Ceram. Int. 2014, 40, 2535; https://doi.org/10.1016/j.ceramint.2013.07.131.Suche in Google Scholar
10. An, F.; Li, X.; Min, P.; Li, H.; Dai, Z.; Yu, Z. Z. Carbon 2018, 126, 119; https://doi.org/10.1016/j.carbon.2017.10.011.Suche in Google Scholar
11. Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y. W. Carbon 2011, 49, 495; https://doi.org/10.1016/j.carbon.2010.09.047.Suche in Google Scholar
12. Kumar, R.; Nayak, S. K.; Sahoo, S.; Panda, B. P.; Mohanty, S.; Nayak, S. K. J. Mater. Sci.: Mater. Electron. 2018, 29, 16932; https://doi.org/10.1007/s10854-018-9788-3.Suche in Google Scholar
13. Huang, T.; Zeng, X.; Yao, Y.; Sun, R.; Meng, F.; Xu, J.; Wong, C. RSC Adv. 2016, 6, 35847; https://doi.org/10.1039/c5ra27315c.Suche in Google Scholar
14. Huang, T.; Zeng, X.; Yao, Y.; Sun, R.; Meng, F.; Xu, J.; Wong, C. RSC Adv. 2017, 7, 23355; https://doi.org/10.1039/c6ra28503a.Suche in Google Scholar
15. Huang, L.; Zhu, P.; Li, G.; Lu, D. D.; Sun, R.; Wong, C. J. Mater. Chem. A 2014, 2, 18246; https://doi.org/10.1039/c4ta03702b.Suche in Google Scholar
16. Wang, Z.; Fu, Y.; Meng, W.; Zhi, C. Nanoscale Res. Lett. 2014, 9, 643; https://doi.org/10.1186/1556-276x-9-643.Suche in Google Scholar PubMed PubMed Central
17. Gerani, K.; Mortaheb, H. R.; Mokhtarani, B. Polym. Plast. Technol. Eng. 2017, 56, 543; https://doi.org/10.1080/03602559.2016.1233260.Suche in Google Scholar
18. Nayak, S. K.; Mohanty, S.; Nayak, S. K. Multiscale Multidiscip, Vol. 3, 2020; p. 103.10.1007/s41939-019-00064-zSuche in Google Scholar
19. Tsai, M. H.; Tseng, I. H.; Chiang, J. C.; Li, J. J. ACS Appl. Mater. Interfaces 2014, 6, 8639; https://doi.org/10.1021/am501323m.Suche in Google Scholar PubMed
20. Singh, A. K.; Panda, B. P.; Mohanty, S.; Nayak, S. K.; Gupta, M. K. Study on Metal Decorated Oxidized Multiwalled Carbon Nanotube (MWCNT)—Epoxy Adhesive for Thermal Conductivity Applications. J. Mater. Sci.: Mater. Electron. 2017, 28, 8908–8920; https://doi.org/10.1007/s10854-017-6621-3.Suche in Google Scholar
21. Kumar, R.; Nayak, S. K.; Sahoo, S.; Panda, B. T.; Mohanty, S.; Nayak, S. K. Study on Thermal Conductive Epoxy Adhesive Based on Adopting Hexagonal Boron Nitride/Graphite Hybrids. J. Mater. Sci.: Mater. Electron. 2018, 29, 16932–16938; https://doi.org/10.1007/s10854-018-9788-3.Suche in Google Scholar
22. Nayak, S. K.; Mohanty, D. J. Adhes. Sci. 2020, 34, 1507. https://doi.org/10.1007/978-981-13-2568-7_9.Suche in Google Scholar
23. Shen, Y.; Jing, T.; Ren, W.; Zhang, J.; Jiang, Z. G.; Yu, Z. Z.; Dasari, A. Compos. Sci. Technol. 2012, 72, 1430; https://doi.org/10.1016/j.compscitech.2012.05.018.Suche in Google Scholar
24. Kumar, R.; Nayak, S. K. J. Mater. Sci.: Mater. Electron. 2020, 31, 16008; https://doi.org/10.1007/s10854-020-04163-3.Suche in Google Scholar
25. Nayak, S. K.; Mishra, A.; Pradhan, S. S.; Agarwal, J. High Perform. Polym. 2021, 33, 127; https://doi.org/10.1177/0954008320945383.Suche in Google Scholar
26. Yazdani, H.; Morshedian, J.; Khonakdar, H. A. Polym. Compos. 2006, 27, 491; https://doi.org/10.1002/pc.20217.Suche in Google Scholar
27. Nayak, S. K.; Mohanty, S.; Nayak, S. K. J. Electron. Mater. 2020, 49, 34; https://doi.org/10.1007/s11664-019-07753-y.Suche in Google Scholar
28. Zhang, Y.; Tuo, R.; Yang, W.; Wu, J.; Zhu, J.; Zhang, C.; Bian, X. Improved Thermal and Electrical Properties of Epoxy Resin Composites by Dopamine and Silane Coupling Agent Modified Hexagonal BN. Polym. Compos. 2020, 41 (11), 4727–4739; https://doi.org/10.1002/pc.25746.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis