Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
Abstract
Introducing multi-walled carbon nanotubes (MWCNT) and montmorillonite (MMT) simultaneously into a polymer can significantly enhance its properties. Meanwhile, choosing the best technique to homogeneously disperse these nanohybrid particles in polymers, without agglomerates, is still a challenge. In this study, a hybrid MMT/MWCNT, prepared by lyophilization process, is introduced in polylactide (PLA). Morphology of the resulting nanocomposites displays synergistic relationships of the MMT/MWCNT, facilitating dispersion in PLA. The analysis of transmission electron microscopy (TEM) specific particle densities of PLA0.5hyb, PLA1.0hyb, and PLA2.0hyb shows values of 77, 64, and 35 µm⁻2, respectively. This suggests that MMT platelets are significantly more exfoliated in PLA0.5hyb compared to the other nanocomposites. It also indicates that filler aggregation increases as the MMT/MWCNT concentration increases. Compared to neat PLA, elastic modulus of nanocomposites increased by up to 46 %, demonstrating the reinforcing effect of MMT/MWCNT hybrid nanofillers. The nanocomposites exhibit viscosity, plasticity and damage phenomena, which are significantly decreased because of the MMT/MWCNT incorporation, compared to neat PLA. Furthermore, the viscoelastic properties, analyzed by dynamic thermal-mechanical analysis, record about 27 % increase in the storage modulus of the nanocomposites compared to PLA, indicating the effectiveness of the hybrid MMT/MWCNT in increasing the resistance of PLA/MMT/MWCNT nanocomposite against thermomechanical aggression.
-
Research ethics: Not applicable.
-
Author contributions: AB, OMS and NAH conceived the original presented idea. AB and NAH supervised the research project. OMS fabricated the samples and carried out the experiments. OMS, AB and MG investigate the effect of microstructure on the global behaviour of the studied nanocomposite material. OMS wrote the first draft of the manuscript with support of AB. AB and NAH provided critical feedback and helped shape the research, analysis, and final manuscript. All authors have read and agreed to the published version of the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Petroleum Technology Development Fund (PTDF, Nigeria) is acknowledged for the doctoral scholarship grant (grant number: 18GFC/PHD/065).
-
Data availability: The raw data can be obtained on request from the corresponding authors.
References
1. Kausar, A.; Rafique, I.; Muhammad, B. Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide and Nanoclay. Polym. Plast. Technol. Eng. 2017, 56 (13), 1438–1456. https://doi.org/10.1080/03602559.2016.1276594.Search in Google Scholar
2. Shirvanimoghaddam, K.; Abolhasani, M. M.; Polisetti, B.; Naebe, M. Periodical Patterning of a Fully Tailored Nanocarbon on CNT for Fabrication of Thermoplastic Composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 304–314. https://doi.org/10.1016/j.compositesa.2018.01.015.Search in Google Scholar
3. Kumar, A.; Kumar, K.; Ghosh, P. K.; Yadav, K. L. MWCNT/TiO2 Hybrid Nano Filler toward High-Performance Epoxy Composite. Ultrason. Sonochem. 2018, 41, 37–46. https://doi.org/10.1016/j.ultsonch.2017.09.005.Search in Google Scholar PubMed
4. Geng, C.; Wang, J.; Zhang, Q.; Fu, Q. New Piezoelectric Damping Composites of Poly(vinylidene fluoride) Blended with Clay and Multi-Walled Carbon Nanotubes. Polym. Int. 2012, 61 (6), 934–938. https://doi.org/10.1002/pi.4161.Search in Google Scholar
5. Haghgoo, M.; Hassanzadeh-Aghdam, M. K.; Ansari, R. A Comprehensive Evaluation of Piezoresistive Response and Percolation Behavior of Multiscale Polymer-Based Nanocomposites. Compos. Part A 2020, 130, 105735. https://doi.org/10.1016/j.compositesa.2019.105735.Search in Google Scholar
6. Liu, S.; Wu, G.; Chen, X.; Zhang, X.; Yu, J.; Liu, M.; Zhang, Y.; Wang, P. Degradation Behavior In Vitro of Carbon Nanotubes (CNTs)/Poly(Lactic Acid) (PLA) Composite Suture. Polymers (Basel) 2019, 11 (6), 1015. https://doi.org/10.3390/polym11061015.Search in Google Scholar PubMed PubMed Central
7. Zimnyakov, D.; Zdrajevsky, R.; Minaev, N.; Epifanov, E.; Popov, V.; Ushakova, O. Extreme Foaming Modes for SCF-Plasticized Polylactides: Quasi-adiabatic and Quasi-isothermal Foam Expansion. Polymers (Basel) 2020, 12 (5), 1055. https://doi.org/10.3390/polym12051055.Search in Google Scholar PubMed PubMed Central
8. Venkategowda, C.; Rajanna, S.; Udupa, N. G. S.; Keshavamurthy, R. Experimental Investigation of Glass-Carbon/Epoxy Hybrid Composites Subjected to Low Velocity Impact Test. FME Trans. 2018, 46 (4), 595–602. https://doi.org/10.5937/fmet1804595R.Search in Google Scholar
9. Sanusi, O. M.; Komolafe, O. D.; Ogundana, T. O.; Olaleke, M. O.; Sanni, Y. Y. Development of Wood-Ash/Resin Polymer Matrix Composite for Body Armour Application. FUOYE J. Eng. Technol. 2016, 1 (1), 10–14. https://doi.org/10.46792/fuoyejet.v1i1.4.Search in Google Scholar
10. Yuan, B.; Sun, Y.; Chen, X.; Shi, Y.; Dai, H.; He, S. Poorly-/Well-Dispersed Graphene: Abnormal Influence on Flammability and Fire Behavior of Intumescent Flame Retardant. Compos. Part A Appl. Sci. Manuf. 2018, 109, 345–354. https://doi.org/10.1016/j.compositesa.2018.03.022.Search in Google Scholar
11. Wu, W.; Liu, T.; Zhang, D.; Sun, Q.; Cao, K.; Zha, J.; Lu, Y.; Wang, B.; Cao, X.; Feng, Y.; Roy, V. A. L.; Li, R. K. Y. Significantly Improved Dielectric Properties of Polylactide Nanocomposites via TiO2 Decorated Carbon Nanotubes. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105650. https://doi.org/10.1016/j.compositesa.2019.105650.Search in Google Scholar
12. Mastellone, M. L. Technical Description and Performance Evaluation of Different Packaging Plastic Waste Management’s Systems in a Circular Economy Perspective. Sci. Total Environ. 2020, 718, 137233. https://doi.org/10.1016/j.scitotenv.2020.137233.Search in Google Scholar PubMed
13. Bai, T.; Zhu, B.; Liu, H.; Wang, Y.; Song, G.; Liu, C.; Shen, C. Biodegradable Poly(Lactic Acid) Nanocomposites Reinforced and Toughened by Carbon Nanotubes/Clay Hybrids. Int. J. Biol. Macromol. 2020, 151, 628–634. https://doi.org/10.1016/j.ijbiomac.2020.02.209.Search in Google Scholar PubMed
14. Pluta, M.; Jeszka, J. K.; Boiteux, G. Polylactide/Montmorillonite Nanocomposites: Structure, Dielectric, Viscoelastic and Thermal Properties. Eur. Polym. J. 2007, 43 (7), 2819–2835. https://doi.org/10.1016/j.eurpolymj.2007.04.009.Search in Google Scholar
15. Sanusi, O. M.; Benelfellah, A.; Bikiaris, D. N.; Aït Hocine, N. Effect of Rigid Nanoparticles and Preparation Techniques on the Performances of Poly(lactic acid) Nanocomposites: A Review. Polym. Adv. Technol. 2021, 32 (2), 444–460. https://doi.org/10.1002/pat.5104.Search in Google Scholar
16. Rocha, C. da, S. A.; Rodrigues Menezes, L.; Silva, E. O. da; Pedrosa, M. C. G. Synergistic Effect of Carbon Nanoparticles on the Mechanical and Thermal Properties of Poly(Lactic Acid) as Promising Systems for Packaging. J. Compos. Mater. 2020, 54 (27), 4133–4144. https://doi.org/10.1177/0021998320927779.Search in Google Scholar
17. Rajabifar, N.; Rostami, A. Investigation of the Effect of Hybrid Nanofiller on the Mechanical Performance and Surface Properties of Bio-based Polylactic Acid/Polyolefin Elastomer (PLA/POE) Blend. Polymers (Basel) 2023, 15 (12), 2708. https://doi.org/10.3390/polym15122708.Search in Google Scholar PubMed PubMed Central
18. Rostami, A.; Vahdati, M.; Alimoradi, Y.; Karimi, M.; Nazockdast, H. Rheology Provides Insight into Flow Induced Nano-structural Breakdown and its Recovery Effect on Crystallization of Single and Hybrid Carbon Nanofiller Filled Poly(lactic acid). Polymer (Guildf). 2018, 134, 143–154. https://doi.org/10.1016/j.polymer.2017.11.062.Search in Google Scholar
19. Kim, Y.; Kim, J. S.; Lee, S. Y.; Mahajan, R. L.; Kim, Y. T. Exploration of Hybrid Nanocarbon Composite with Polylactic Acid for Packaging Applications. Int. J. Biol. Macromol. 2020, 144, 135–142. https://doi.org/10.1016/j.ijbiomac.2019.11.239.Search in Google Scholar PubMed
20. Kim, H. S.; Jang, J. U.; Yu, J.; Kim, S. Y. Thermal Conductivity of Polymer Composites Based on the Length of Multi-Walled Carbon Nanotubes. Compos. Part B Eng. 2015, 79, 505–512. https://doi.org/10.1016/j.compositesb.2015.05.012.Search in Google Scholar
21. Radmanesh, F.; Rijnaarts, T.; Moheb, A.; Sadeghi, M.; de Vos, W. M. Enhanced Selectivity and Performance of Heterogeneous Cation Exchange Membranes through Addition of Sulfonated and Protonated Montmorillonite. J. Colloid Interface Sci. 2019, 533, 658–670. https://doi.org/10.1016/j.jcis.2018.08.100.Search in Google Scholar PubMed
22. Moghri, M.; Shamaee, H.; Shahrajabian, H.; Ghannadzadeh, A. The Effect of Different Parameters on Mechanical Properties of PA-6/Clay Nanocomposite through Genetic Algorithm and Response Surface Methods. Int. Nano Lett. 2015, 5 (3), 133–140. https://doi.org/10.1007/s40089-015-0146-7.Search in Google Scholar
23. Hapuarachchi, T. D.; Peijs, T. Multiwalled Carbon Nanotubes and Sepiolite Nanoclays as Flame Retardants for Polylactide and its Natural Fibre Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41 (8), 954–963. https://doi.org/10.1016/j.compositesa.2010.03.004.Search in Google Scholar
24. Sanusi, O. M.; Benelfellah, A.; Aït Hocine, N. Clays and Carbon Nanotubes as Hybrid Nanofillers in Thermoplastic-Based Nanocomposites – A Review. Appl. Clay Sci. 2020, 185, 105408. https://doi.org/10.1016/j.clay.2019.105408.Search in Google Scholar
25. Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004.Search in Google Scholar
26. Safdari, M.; Al-Haik, M. S. Synergistic Electrical and Thermal Transport Properties of Hybrid Polymeric Nanocomposites Based on Carbon Nanotubes and Graphite Nanoplatelets. Carbon N. Y. 2013, 64, 111–121. https://doi.org/10.1016/j.carbon.2013.07.042.Search in Google Scholar
27. Manikandan, D.; Mangalaraja, R. V.; Avila, R. E.; Siddheswaran, R.; Ananthakumar, S. Carbon Nanotubes Rooted Montmorillonite (CNT-MM) Reinforced Nanocomposite Membrane for PEM Fuel Cells. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2012, 177 (8), 614–618. https://doi.org/10.1016/j.mseb.2012.02.027.Search in Google Scholar
28. Mumtazah, Z.; Priyangga, A.; Atmaja, L. Some Properties of Membrane Based on Chitosan/Phthalic Anhydride Matrices Using Montmorillonite/Multi-Walled Carbon Nanotubes Filler for DMFC Application. In International Conference on Science and Applied Science (ICSAS), Indonesia, Vol. 020066, 2019; pp. 1–6.10.1063/1.5141679Search in Google Scholar
29. Garidel, P.; Presser, I. Lyophilization of High-Concentration Protein Formulations. In Lyophilization of Pharmaceuticals and Biologicals: New Technologies and Approaches, Methods in Pharmacology and Toxicology; Ward, K. R.; Matejtschuk, P., Eds.; Humana Press: New York, 2019; pp. 291–325.10.1007/978-1-4939-8928-7_12Search in Google Scholar
30. Sanusi, O. M.; Benelfellah, A.; Papadopoulos, L.; Terzopoulou, Z.; Malletzidou, L.; Vasileiadis, I. G.; Chrissafis, K.; Bikiaris, D. N.; Aït Hocine, N. Influence of Montmorillonite/Carbon Nanotube Hybrid Nanofillers on the Properties of Poly(lactic acid). Appl. Clay Sci. 2021, 201, 105925. https://doi.org/10.1016/j.clay.2020.105925.Search in Google Scholar
31. Varol, H. S.; Srivastava, A.; Kumar, S.; Bonn, M.; Meng, F.; Parekh, S. H. Bridging Chains Mediate Nonlinear Mechanics of Polymer Nanocomposites under Cyclic Deformation. Polymer (Guildf). 2020, 200, 122529. https://doi.org/10.1016/j.polymer.2020.122529.Search in Google Scholar
32. Merabia, S.; Sotta, P.; Long, D. R. A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects). Macromolecules 2008, 41 (21), 8252–8266. https://doi.org/10.1021/ma8014728.Search in Google Scholar
33. Remache, D.; Caliez, M.; Gratton, M.; Dos Santos, S. The Effects of Cyclic Tensile and Stress-Relaxation Tests on Porcine Skin. J. Mech. Behav. Biomed. Mater. 2018, 242–249.10.1016/j.jmbbm.2017.09.009Search in Google Scholar PubMed
34. Zhang, C.; Gou, X.; Xiao, R. Hysteresis in Glass Microsphere Filled Elastomers under Cyclic Loading. Polym. Test. 2021, 95, 107081. https://doi.org/10.1016/j.polymertesting.2021.107081.Search in Google Scholar
35. Vieira, A. C.; Medeiros, R.; Guedes, R. M.; Marques, A. T.; Tita, V. Visco-Elastic-Plastic Properties of Suture Fibers Made of PLA-PCL. Mater. Sci. Forum 2013, 730–732, 56–61. https://doi.org/10.4028/www.scientific.net/MSF.730-732.56.Search in Google Scholar
36. Qiu, Y.; Lv, Q.; Wu, D.; Xie, W.; Peng, S.; Lan, R.; Xie, H. Cyclic Tensile Properties of the Polylactide Nanocomposite Foams Containing Cellulose Nanocrystals. Cellulose 2018, 25 (3), 1795–1807. https://doi.org/10.1007/s10570-018-1703-9.Search in Google Scholar
37. Rostami, A.; Moosavi, M. I. High-Performance Thermoplastic Polyurethane Nanocomposites Induced by Hybrid Application of Functionalized Graphene and Carbon Nanotubes. J. Appl. Polym. Sci. 2020, 137 (14), 48520. https://doi.org/10.1002/app.48520.Search in Google Scholar
38. Shi, S.; Peng, Z.; Jing, J.; Yang, L.; Chen, Y. 3D Printing of Delicately Controllable Cellular Nanocomposites Based on Polylactic Acid Incorporating Graphene/Carbon Nanotube Hybrids for Efficient Electromagnetic Interference Shielding. ACS Sustain. Chem. Eng. 2020, 8 (21), 7962–7972. https://doi.org/10.1021/acssuschemeng.0c01877.Search in Google Scholar
39. Fornes, T. D.; Yoon, P. J.; Keskkula, H.; Paul, D. R. Nylon 6 Nanocomposites: The Effect of Matrix Molecular Weight. Polymer 2001, 09929–09940. https://doi.org/10.1016/s0032-3861(01)00552-3.Search in Google Scholar
40. Zhou, Y.; Lei, L.; Yang, B.; Li, J.; Ren, J. Preparation and Characterization of Polylactic Acid (PLA) Carbon Nanotube Nanocomposites. Polym. Test. 2018, 68, 34–38. https://doi.org/10.1016/j.polymertesting.2018.03.044.Search in Google Scholar
41. Keshavarzi, S.; Babaei, A.; Goudarzi, A.; Shakeri, A. ZnO Nanoparticles as Chain Elasticity Reducer and Structural Elasticity Enhancer: Correlating the Degradating Role and Localization of ZnO with the Morphological and Mechanical Properties of PLA/PP/ZnO Nanocomposite. Polym. Adv. Technol. 2019, 1083–1095. https://doi.org/10.1002/pat.4542.Search in Google Scholar
42. Shayan, M.; Azizi, H.; Ghasemi, I.; Karrabi, M. Influence of Modified Starch and Nanoclay Particles on Crystallization and Thermal Degradation Properties of Cross-Linked Poly(Lactic Acid). J. Polym. Res. 2019, 26 (10), 1–12. https://doi.org/10.1007/s10965-019-1879-1.Search in Google Scholar
43. Rostami, A.; Nazockdast, H.; Karimi, M. Graphene Induced Microstructural Changes of PLA/MWCNT Biodegradable Nanocomposites: Rheological, Morphological, Thermal and Electrical Properties. RSC Adv. 2016, 6 (55), 49747–49759. https://doi.org/10.1039/c6ra08345e.Search in Google Scholar
44. Prashantha, K.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P. Processing and Characterization of Polypropylene Filled with Multiwalled Carbon Nanotube and Clay Hybrid Nanocomposites. Int. J. Polym. Anal. Charact. 2014, 19 (4), 363–371. https://doi.org/10.1080/1023666X.2014.902715.Search in Google Scholar
45. Pandey, P.; Mohanty, S.; Nayak, S. K. Improved Flame Retardancy and Thermal Stability of Polymer/Clay Nanocomposites, with the Incorporation of Multiwalled Carbon Nanotube as Secondary Filler: Evaluation of Hybrid Effect of Nanofillers. High Perform. Polym. 2014, 26 (7), 826–836. https://doi.org/10.1177/0954008314531802.Search in Google Scholar
46. Zhang, X.; Zhang, Y. Reinforcement Effect of Poly(Butylene Succinate) (PBS)-Grafted Cellulose Nanocrystal on Toughened PBS/Polylactic Acid Blends. Carbohydr. Polym. 2016, 140, 374–382. https://doi.org/10.1016/j.carbpol.2015.12.073.Search in Google Scholar PubMed
47. Wang, S.; Ma, Y.; Deng, Z.; Zhang, S.; Cai, J. Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties of 3D Printed Polylactic Acid Materials. Polym. Test. 2020, 86, 106483. https://doi.org/10.1016/j.polymertesting.2020.106483.Search in Google Scholar
48. Lai, S. M.; Wu, S. H.; Lin, G. G.; Don, T. M. Unusual Mechanical Properties of Melt-Blended Poly(Lactic Acid) (PLA)/Clay Nanocomposites. Eur. Polym. J. 2014, 52 (1), 193–206. https://doi.org/10.1016/j.eurpolymj.2013.12.012.Search in Google Scholar
49. Coppola, B.; Cappetti, N.; Maio, L.Di; Scarfato, P.; Incarnato, L. 3D Printing of PLA/Clay Nanocomposites: Influence of Printing Temperature on Printed Samples Properties. Materials (Basel) 2018, 11 (10), 1–17. https://doi.org/10.3390/ma11101947.Search in Google Scholar PubMed PubMed Central
50. Salmoria, G. V.; Leite, J. L.; Vieira, L. F.; Pires, A. T. N.; Roesler, C. R. M. Mechanical Properties of PA6_PA12 Blend Specimens Prepared by Selective Laser Sintering. Polym. Test. 2012, 31, 411–416. https://doi.org/10.1016/jpolymertesting.2011.12.006.Search in Google Scholar
51. Ren, Z.; Dong, L.; Yang, Y. Dynamic Mechanical and Thermal Properties of Plasticized Poly(lactic acid). J. Appl. Polym. Sci. 2006, 101 (3), 1583–1590; https://doi.org/10.1002/app.23549.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis