Home Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
Article
Licensed
Unlicensed Requires Authentication

Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization

  • Wenwei Li , Jun Shen , Dutchanee Pholharn , Keartisak Sriprateep , Patnarin Worajittiphon and Yottha Srithep EMAIL logo
Published/Copyright: August 28, 2024
Become an author with De Gruyter Brill

Abstract

The effect of epoxidized soybean oil (ESO) on homocrystallization (HC) and stereocomplex (SC) formation behavior of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) bends was investigated utilizing differential scanning calorimetry (DSC). Isothermal crystallization was performed on ESO/PLLA/PDLA blends with varying ESO contents (0, 5, 8, and 10 wt%) and temperatures (90 °C, 120 °C, and 150 °C) for a different duration (12.5, 25, and 125 min). It was found that the ESO could effectively inhibit HC crystallization and promote SC crystallization. For the sample without ESO (ESO-0), the isothermal crystallization temperature and duration had little effect on the melting behavior, whereas sample with 5 wt% ESO (ESO-5), HC crystallization decreased while SC crystallization continued to increase with increasing duration. Additionally, at higher crystallization temperatures with constant ESO content, the melting temperature of SC crystals did not significantly change, suggesting that ESO did not degrade PLLA/PDLA blends. These findings imply that ESO modifies crystallization kinetics, suppressing HC formation and enhancing SC formation, which could benefit for specific material properties and applications.


Corresponding author: Yottha Srithep, Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand, E-mail:

Funding source: Mahasarakham University

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This research project was financially supported by Mahasarakham University.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. https://doi.org/10.1016/j.addr.2016.03.010.Search in Google Scholar PubMed

2. Im, S. H.; Im, D. H.; Park, S. J.; Chung, J. J.; Jung, Y.; Kim, S. H. Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules 2021, 26 (10), 2846. https://doi.org/10.3390/molecules26102846.Search in Google Scholar PubMed PubMed Central

3. Luo, F.; Fortenberry, A.; Ren, J.; Qiang, Z. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Front. Chem. 2020, 8, 688. https://doi.org/10.3389/fchem.2020.00688.Search in Google Scholar PubMed PubMed Central

4. Bai, H.; Deng, S.; Bai, D.; Zhang, Q.; Fu, Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromol. Rapid Commun. 2017, 38 (23), 1700454. https://doi.org/10.1002/marc.201700454.Search in Google Scholar PubMed

5. Li, C.; Gong, W.; Deng, Z.; Yao, Z.; Meng, X.; Xin, Z. Fully Biodegradable Long-Chain Branched Polylactic Acid with High Crystallization Performance and Heat Resistance. Ind. Eng. Chem. Res. 2022, 61 (30), 10945–10954. https://doi.org/10.1021/acs.iecr.2c01276.Search in Google Scholar

6. Kawamoto, N.; Sakai, A.; Horikoshi, T.; Urushihara, T.; Tobita, E. Nucleating Agent for Poly(L-Lactic Acid)—An Optimization of Chemical Structure of Hydrazide Compound for Advanced Nucleation Ability. J. Appl. Polym. Sci. 2007, 103 (1), 198–203. https://doi.org/10.1002/app.25109.Search in Google Scholar

7. Srithep, Y.; Pholharn, D.; Worajittiphon, P.; Sriprateep, K.; Veang-In, O.; Morris, J. Toughening Polylactide Stereocomplex by Injection Molding With Thermoplastic Starch and Chain Extender. Polymers 2023, 15 (9), 2055. https://doi.org/10.3390/polym15092055.Search in Google Scholar PubMed PubMed Central

8. Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of Crystal Morphology in Poly(L-Lactide) by Adding Nucleating Agent. Macromolecules 2011, 44 (6), 1233–1237. https://doi.org/10.1021/ma102439t.Search in Google Scholar

9. Zhang, J.; Chen, Y.; Sewell, P. D.; Brook, M. Utilization of Softwood Lignin as Both Crosslinker and Reinforcing Agent in Silicone Elastomers. Green Chem. 2015, 17 (3), 1811–1819. https://doi.org/10.1039/c5gc90025e.Search in Google Scholar

10. Ma, P.; Shen, T.; Xu, P.; Dong, W.; Lemstra, P. J.; Chen, M. Superior Performance of Fully Biobased Poly(Lactide) Via Stereocomplexation-Induced Phase Separation: Structure Versus Property. ACS Sustainable Chem. Eng. 2015, 3 (7), 1470–1478. https://doi.org/10.1021/acssuschemeng.5b00208.Search in Google Scholar

11. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Stereocomplex Formation Between Enantiomeric Poly(Lactides). Macromolecules 1987, 20 (4), 904–906. https://doi.org/10.1021/ma00170a034.Search in Google Scholar

12. Liu, C.; Han, Z.; Yan, X.; Yu, J.; Zhang, Q.; Wang, D.; Yan, D.; Zhang, H. Rheological and Mechanical Properties, Heat Resistance and Hydrolytic Degradation of Poly(Butylene Succinate-co-adipate)/Stereocomplex Polylactide Blends. J. Appl. Polym. Sci. 2023, 140 (21), e53884. https://doi.org/10.1002/app.53884.Search in Google Scholar

13. Ali, F.; Chang, Y.-W.; Kang, S. C.; Yoon, J. Y. Thermal, Mechanical and Rheological Properties of Poly(Lactic Acid)/Epoxidized Soybean Oil Blends. Polym. Bull. 2009, 62, 91–98. https://doi.org/10.1007/s00289-008-1012-9.Search in Google Scholar

14. Li, W.; Srithep, Y.; Shen, J.; Pholharn, D.; Sriprateep, K.; Worajittiphon, P.; Khoklang, N. Preferential Formation of the Stereocomplex Crystals of Poly(L-Lactide) and Poly(D-Lactide) Blend by Epoxidized Soybean Oil Under Nonisothermal Crystallization. Polym. Adv. Technol. 2024, 35 (1), e6278. https://doi.org/10.1002/pat.6278.Search in Google Scholar

15. Esposito, L. H.; Marzocca, A. J. Highly Epoxidized Soybean Oil in Replacement of Mineral Oil for High Performance on Silica-Filled Tread Rubber Compounds. J. Elastomers Plast. 2022, 54 (1), 169–184. https://doi.org/10.1177/00952443211029.Search in Google Scholar

16. Lv, T.; Li, J.; Huang, S.; Wen, H.; Li, H.; Chen, J.; Jiang, S. Synergistic Effects of Chain Dynamics and Enantiomeric Interaction on the Crystallization in PDLA/PLLA Mixtures. Polymer 2021, 222, 123648. https://doi.org/10.1016/j.polymer.2021.123648.Search in Google Scholar

17. Raghunath, S.; Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. PLA/ESO/MWCNT Nanocomposite: A Study on Mechanical, Thermal and Electroactive Shape Memory Properties. J. Polym. Res. 2018, 25, 1–12. https://doi.org/10.1007/s10965-018-1523-5.Search in Google Scholar

18. Han, Y.; Shi, J.; Mao, L.; Wang, Z.; Zhang, L. Improvement of Compatibility and Mechanical Performances of PLA/PBAT Composites with Epoxidized Soybean Oil as Compatibilizer. Ind. Eng. Chem. Res. 2020, 59 (50), 21779–21790. https://doi.org/10.1021/acs.iecr.0c04285.Search in Google Scholar

19. Shi, Z.-Z.; Fan, Z.-Y.; Ma, L.; Gong, P.-J.; Bao, R.-Y.; Yang, M.-B.; Yang, W. Simultaneously Enhanced Stereocomplexation and Melt Strength by Dynamic Polylactide toward Heat-Resistant Green Foams. Macromolecules 2023, 56 (21), 8735–8746. https://doi.org/10.1021/acs.macromol.3c01595.Search in Google Scholar

20. Bouti, M.; Irinislimane, N.; Belhaneche-Bensemra, N. Properties Investigation of Epoxidized Sunflower Oil as Bioplasticizer for Poly(Lactic Acid). J. Polym. Environ. 2022, 30 (1), 232–245. https://doi.org/10.1007/s10924-021-02194-3.Search in Google Scholar

21. Bao, R.-Y.; Yang, W.; Jiang, W.-R.; Liu, Z.-Y.; Xie, B.-H.; Yang, M.-B. Polymorphism of Racemic Poly(L-Lactide)/Poly(D-Lactide) Blend: Effect of Melt and Cold Crystallization. J. Phys. Chem. B 2013, 117 (13), 3667–3674. https://doi.org/10.1021/jp311878f.Search in Google Scholar PubMed

22. Nouri, S.; Dubois, C.; Lafleur, P. G. Homocrystal and Stereocomplex Formation Behavior of Polylactides with Different Branched Structures. Polymer 2015, 67, 227–239. https://doi.org/10.1016/j.polymer.2015.04.065.Search in Google Scholar

23. Park, C. B.; Saeidlou, S.; Huneault, M. A.; LiPark, H. Effect of Nucleation and Plasticization on the Stereocomplex Formation between Enantiomeric Poly(Lactic Acid). Polymer 2013, 54 (21), 5762–5770. https://doi.org/10.1016/j.polymer.2013.08.031.Search in Google Scholar

24. Xiao, H.; Li, P.; Ren, X.; Jiang, T.; Yeh, J. T. Isothermal Crystallization Kinetics and Crystal Structure of Poly(Lactic Acid): Effect of Triphenyl Phosphate and Talc. J. Appl. Polym. Sci. 2010, 118 (6), 3558–3569. https://doi.org/10.1002/app.32728.Search in Google Scholar

25. Srithep, Y.; Nealey, P.; Turng, L. S. Effects of Annealing Time and Temperature on the Crystallinity and Heat Resistance Behavior of Injection-Molded Poly(Lactic Acid). Polym. Eng. Sci. 2013, 53 (3), 580–588. https://doi.org/10.1002/pen.23304.Search in Google Scholar

26. Srithep, Y.; Pholharn, D. Plasticizer Effect on Melt Blending of Polylactide Stereocomplex. e-Polymers 2017, 17 (5), 409–416. https://doi.org/10.1515/epoly-2016-0331.Search in Google Scholar

27. Pan, P.; Han, L.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y. Competitive Stereocomplexation, Homocrystallization, and Polymorphic Crystalline Transition in Poly(L-Lactic Acid)/Poly(D-Lactic Acid) Racemic Blends: Molecular Weight Effects. J. Phys. Chem. B 2015, 119 (21), 6462–6470. https://doi.org/10.1021/acs.jpcb.5b03546.Search in Google Scholar PubMed

28. Xiong, Z.; Zhang, X.; Wang, R.; de Vos, S.; Wang, R.; Joziasse, C. A. P.; Wang, D. Favorable Formation of Stereocomplex Crystals in Poly(L-Lactide)/Poly(D-Lactide) Blends by Selective Nucleation. Polymer 2015, 76, 98–104. https://doi.org/10.1016/j.polymer.2015.08.056.Search in Google Scholar

29. Song, Y.; Zhang, X.; Yin, Y.; de Vos, S.; Wang, R.; Joziasse, C. A.; LiuWang, G. D. Enhancement of Stereocomplex Formation in Poly(L-Lactide)/Poly(D-Lactide) Mixture by Shear. Polymer 2015, 72, 185–192. https://doi.org/10.1016/j.polymer.2015.07.023.Search in Google Scholar

30. Fadda, H. M.; Hernández, M. C.; Margetson, D. N.; McAllister, S. M.; Basit, A. W.; BrocchiniSuárez, S.; Suárez, N. The Molecular Interactions that Influence the Plasticizer Dependent Dissolution of Acrylic Polymer Films. J. Pharm. Sci. 2008, 97 (9), 3957–3971. https://doi.org/10.1002/jps.21292.Search in Google Scholar PubMed

31. Wu, W.; Tian, H.; Xiang, A. Influence of Polyol Plasticizers on the Properties of Polyvinyl Alcohol Films Fabricated by Melt Processing. J. Polym. Environ. 2012, 20, 63–69. https://doi.org/10.1007/s10924-011-0364-7.Search in Google Scholar

32. Han, L.; Pan, P.; Shan, G.; Bao, Y. Stereocomplex Crystallization of High-Molecular-Weight Poly(L-Lactic Acid)/Poly(D-Lactic Acid) Racemic Blends Promoted by a Selective Nucleator. Polymer 2015, 63, 144–153. https://doi.org/10.1016/j.polymer.2015.02.053.Search in Google Scholar

33. Przybytek, A.; Sienkiewicz, M.; Kucińska-Lipka, J.; Janik, H. Preparation and Characterization of Biodegradable and Compostable PLA/TPS/ESO Compositions. Ind. Crops Prod. 2018, 122, 375–383. https://doi.org/10.1016/j.indcrop.2018.06.016.Search in Google Scholar

34. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Crystallization and Melting Behavior of Poly(L-Lactic Acid). Macromolecules 2007, 40 (26), 9463–9469. https://doi.org/10.1021/ma070082c.Search in Google Scholar

35. Bao, R.-Y.; Yang, W.; Wei, X.-F.; Bang-hu, X. Enhanced Formation of Stereocomplex Crystallites of High Molecular Weight Poly(L-lactide)/Poly(D-lactide) Blends from Melt by Using Poly(Ethylene Glycol). ACS Sustainable Chem. Eng. 2014, 2 (10), 2301–2309. https://doi.org/10.1021/sc500464c.Search in Google Scholar

36. Diao, X.; Chen, X.; Deng, S.; Bai, H. Substantially Enhanced Stereocomplex Crystallization of Poly(L-Lactide)/Poly(D-Lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers. Crystals 2022, 12 (2), 210. https://doi.org/10.3390/cryst12020210.Search in Google Scholar

37. Zhu, J.; Na, B.; Lv, R.; Li, C. Enhanced Stereocomplex Formation of High-Molecular-Weight Polylactides by Gelation in an Ionic Liquid. Polym. Int. 2014, 63 (6), 1101–1104. https://doi.org/10.1002/pi.4620.Search in Google Scholar

38. Marand, H.; Xu, J.; Srinivas, S. Determination of the Equilibrium Melting Temperature of Polymer Crystals: Linear and Nonlinear Hoffman− Weeks Extrapolations. Macromolecules 1998, 31 (23), 8219–8229. https://doi.org/10.1021/ma980747y.Search in Google Scholar

39. Mahmoud, N. H. M.; Takagi, H.; Shimizu, N.; Igarashi, N.; Sakurai, S. Significantly High Melting Temperature of Homopolymer Crystals Obtained in a Poly(L-Lactic Acid)/Poly(D-Lactic Acid)(50/50) Blend. ACS omega 2023, 8 (43), 40482–40493. https://doi.org/10.1021/acsomega.3c05165.Search in Google Scholar PubMed PubMed Central

40. Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y. Rheology and Crystallization of Long-Chain Branched Poly(L-Lactide) With Controlled Branch Length. Ind. Eng. Chem. Res. 2012, 51 (33), 10731–10741. https://doi.org/10.1021/ie300524j.Search in Google Scholar

41. Dong, L.; Wang, C. M. Synthesis, Crystallization Kinetics, and Spherulitic Growth of Linear and Star-Shaped Poly(L-Lactide) With Different Numbers of Arms. J. Polym. Sci. A Polym. Chem. 2006, 44 (7), 2226–2236. https://doi.org/10.1002/pola.21330.Search in Google Scholar

Received: 2024-04-18
Accepted: 2024-08-08
Published Online: 2024-08-28
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0081/html
Scroll to top button