Home Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
Article
Licensed
Unlicensed Requires Authentication

Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties

  • Ivaturi Siva Ramakoti , Achyut Kumar Panda , Soumya Jal and Narayan Gouda ORCID logo EMAIL logo
Published/Copyright: October 11, 2024
Become an author with De Gruyter Brill

Abstract

In this study, lanthanum oxide (La2O3) nanoparticles or lanthana were synthesized by the planetary ball milling method and then used as a filler for the preparation of the polypropylene (PP) based nanocomposites by solution mixing method. The PP used in the study was derived from the discarded saline bottles. The structural and the surface morphology of the synthesized lanthanum oxide nanoparticles were characterized by XRD, SEM and FTIR. The thermogravimetric analysis (TGA) study revealed that the thermal stability of the nano lanthana composites increased with the addition of the lanthanum oxide nanoparticles. The mechanical properties, such as Young’s modulus and tensile strength, were also improved by the addition of the lanthanum oxide nanoparticles to the PP matrix. The composites also showed antibacterial activity against Escherichia coli bacteria. This approach not only mitigates medical plastic waste and environmental impact but also paves the way for versatile polymer nanocomposites with extensive industrial applications, especially in biomedical packaging.


Corresponding author: Narayan Gouda, Department of Chemistry, Centurion University of Technology and Management, Bhubaneswar, Odisha 761211, India, E-mail:

Acknowledgments

The authors would like to acknowledge and thank CIIRC Jyothi Institute of Technology Bangalore for providing the characterisation facilities.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable as no clinical investigation was involved.

  3. Author contributions: All authors contributed to the study’s conception and design as follows: I. Siva Ramakoti: experimentation, data collection, analysis and interpretation, original draft preparation, manuscript writing. Achyut Panda: supervision, conceptualisation, manuscript reviewing, and editing. Soumya Jal: antimicrobial test and interpretation. Narayan Gouda: supervision, conceptualisation, interpretation, manuscript reviewing and editing. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

  7. Data availability: The raw data can be provided on request from the corresponding authors.

References

1. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782; https://doi.org/10.1126/sciadv.1700782.Search in Google Scholar PubMed PubMed Central

2. Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent Advances in the Gasification of Waste Plastics. A Critical Overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596; https://doi.org/10.1016/j.rser.2017.09.032.Search in Google Scholar

3. Hossain, M. T.; Shahid, M. A.; Mahmud, N.; Habib, A.; Rana, M. M.; Khan, S. A.; Hossain, M. D. Research and Application of Polypropylene: a Review. Discover. Nano. 2024, 19, 2; https://doi.org/10.1186/s11671-023-03952-z.Search in Google Scholar PubMed PubMed Central

4. Budsaereechai, S.; Hunt, A. J.; Ngernyen, Y. Catalytic Pyrolysis of Plastic Waste for the Production of Liquid Fuels for Engines. RSC Adv. 2019, 9, 5844–5857; https://doi.org/10.1039/c8ra10058f.Search in Google Scholar PubMed PubMed Central

5. Schyns, Z. O. G.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42; https://doi.org/10.1002/marc.202000415.Search in Google Scholar PubMed

6. Li, C. Q.; Zha, J. W.; Long, H. Q.; Wang, S. J.; Zhang, D. L.; Dang, Z. M. Mechanical and Dielectric Properties of Graphene Incorporated Polypropylene Nanocomposites Using Polypropylene-Graft-Maleic Anhydride as a Compatibilizer. Compos. Sci. Technol. 2017, 153, 111–118; https://doi.org/10.1016/j.compscitech.2017.10.015.Search in Google Scholar

7. Yeo, S. Y.; Jeong, S. H. Preparation and Characterization of Polypropylene/silver Nanocomposite Fibers. Polym. Int. 2003, 52, 1053–1057; https://doi.org/10.1002/pi.1215.Search in Google Scholar

8. Harada, K.; Chu, P.; Xu, K.; Fujimori, A. Polypropylene ‐based Nanocomposite with Improved Mechanical Properties: Effect of Cellulose Nanofiber and Polyrotaxane with Partial Miscibility. Polym. Compos. 2023, 44, 2977–2987; https://doi.org/10.1002/pc.27295.Search in Google Scholar

9. Oseh, J. O.; Mohd Norddin, M. N. A.; Ismail, I.; Gbadamosi, A. O.; Agi, A.; Mohammed, H. N. A Novel Approach to Enhance Rheological and Filtration Properties of Water–Based Mud Using Polypropylene–Silica Nanocomposite. J. Pet. Sci. Eng. 2019, 181; https://doi.org/10.1016/j.petrol.2019.106264.Search in Google Scholar

10. Wang, S.; Ajji, A.; Guo, S.; Xiong, C. Preparation of Microporous Polypropylene/Titanium Dioxide Composite Membranes with Enhanced Electrolyte Uptake Capability via Melt Extruding and Stretching. Polym. (Basel) 2017, 9, 110; https://doi.org/10.3390/polym9030110.Search in Google Scholar PubMed PubMed Central

11. Esthappan, S. K.; Nair, A. B.; Joseph, R. Effect of Crystallite Size of Zinc Oxide on the Mechanical, Thermal and Flow Properties of Polypropylene/zinc Oxide Nanocomposites. Compos. B Eng. 2015, 69, 145–153; https://doi.org/10.1016/j.compositesb.2013.08.010.Search in Google Scholar

12. Ramakoti, I. S.; Panda, A. K.; Gouda, N. A Brief Review on Polymer Nanocomposites: Current Trends and Prospects. J. Polym. Eng. 2023, 43, 651–679; https://doi.org/10.1515/polyeng-2023-0103.Search in Google Scholar

13. Görbe, Á.; Varga, L. J.; Bárány, T. Development of Nanoparticle-Filled Polypropylenebased Single Polymer Composite Foams. Heliyon 2023, 9; https://doi.org/10.1016/j.heliyon.2023.e19638.Search in Google Scholar PubMed PubMed Central

14. Sonawane, S.; Thakur, P.; Paul, R. Study on Thermal Property Enhancement of MWCNT Based Polypropylene (PP) Nanocomposites. Mater. Today Proc. 2020, 27, 550–555; https://doi.org/10.1016/j.matpr.2019.12.018.Search in Google Scholar

15. Bafana, A. P.; Yan, X.; Wei, X.; Patel, M.; Guo, Z.; Wei, S.; Wujcik, E. K. Polypropylene Nanocomposites Reinforced with Low Weight Percent Graphene Nanoplatelets. Compos. B Eng. 2017, 109, 101–107; https://doi.org/10.1016/j.compositesb.2016.10.048.Search in Google Scholar

16. Razali, N. A.; Conte, M.; McGregor, J. The Role of Impurities in the La2O3 Catalysed Carboxylation of Crude Glycerol. Catal. Letters. 2019, 149, 1403–1414; https://doi.org/10.1007/s10562-019-02679-w.Search in Google Scholar

17. Ponpandi, R.; Kumar, P. R.; Maharajan, T. M.; Prabu, A. P.; Santhana Kumar, K.; Kumar, R.; Maharajan, M.; Chinnasamy, M.; Pitchiah, P. A.; Arockia, S. J. Hydroxyl Radical Scavenging Activity of La2O3 Nanoparticles. The Pharma Innovation J. 2019, 8, 759–763.Search in Google Scholar

18. Song, J.; Lu, C.; Xu, D.; Ni, Y.; Liu, Y.; Xu, Z.; Liu, J. The Effect of Lanthanum Oxide (La2O3 ) on the Structure and Crystallization of Poly(vinylidene Fluoride). Polym. Int. 2010, 59, 954–960; https://doi.org/10.1002/pi.2812.Search in Google Scholar

19. Fan, L.; Yu, L.; Xu, F.; Qin, G.; Chen, Q. Preparation of PVA-Based Composite Alkaline Solid Polymer Electrolyte with La2O3 Nanoparticle Filler. J. Nanopart. Res. 2021, 23, 235; https://doi.org/10.1007/s11051-021-05348-5.Search in Google Scholar

20. Alhassan, S.; Alshammari, K.; Alshammari, M.; Alotaibi, T.; Alshammari, A. H.; Alhamazani, A.; Henini, M.; Abdel, M. T. T. Linear and Nonlinear Optical Investigations of Polyvinyl Chloride Modified La2O3 Nanocomposite Films. Results Phys. 2024, 58; https://doi.org/10.1016/j.rinp.2024.107456.Search in Google Scholar

21. Mirjalili, F.; Chuah, L.; Salahi, E. Mechanical and Morphological Properties of Polypropylene/Nano α -Al 2 O 3 Composites. Sci. World J. 2014, 2014, 1–12; https://doi.org/10.1155/2014/718765.Search in Google Scholar PubMed PubMed Central

22. Khalaf, W. M.; Al-Mashhadani, M. H. Synthesis and Characterization of Lanthanum Oxide La2O3 Net-like Nanoparticles by New Combustion Method. Biointerface Res. Appl. Chem. 2022, 12, 3066–3075.10.33263/BRIAC123.30663075Search in Google Scholar

23. Tejani, J.; Shah, R.; Vaghela, H.; Vajapara, S.; Pathan, A. Controlled Synthesis and Characterization of Lanthanum Nanorods. Int. J. Thin Film Sci. Technol. 2020, 9, 119–125.10.18576/ijtfst/090205Search in Google Scholar

24. Salavati-Niasari, M.; Hosseinzadeh, G.; Davar, F. Synthesis of Lanthanum Carbonate Nanoparticles via Sonochemical Method for Preparation of Lanthanum Hydroxide and Lanthanum Oxide Nanoparticles. J. Alloys Compd. 2011, 509, 134–140; https://doi.org/10.1016/j.jallcom.2010.09.006.Search in Google Scholar

25. Kabir, H.; Nandyala, S. H.; Rahman, M. M.; Kabir, M. A.; Stamboulis, A. Influence of Calcination on the Sol–Gel Synthesis of Lanthanum Oxide Nanoparticles. App. Phys. A 2018, 124, 820; https://doi.org/10.1007/s00339-018-2246-5.Search in Google Scholar

26. Goharshadi, E. K.; Mahvelati, T.; Yazdanbakhsh, M. Influence of Preparation Methods of Microwave, Sol–Gel, and Hydrothermal on Structural and Optical Properties of Lanthania Nanoparticles. J. Iran. Chem. Soc. 2016, 13, 65–72; https://doi.org/10.1007/s13738-015-0713-x.Search in Google Scholar

27. Gopanna, A.; Mandapati, R. N.; Thomas, S. P.; Rajan, K.; Chavali, M. Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy and Wide-Angle X-Ray Scattering (WAXS) of Polypropylene (PP)/cyclic Olefin Copolymer (COC) Blends for Qualitative and Quantitative Analysis. Polym. Bull. 2019, 76, 4259–4274; https://doi.org/10.1007/s00289-018-2599-0.Search in Google Scholar

28. Wang, J.; Guo, J.; Li, C.; Yang, S.; Wu, H.; Guo, S. Crystallization Kinetics Behavior, Molecular Interaction, and Impact-Induced Morphological Evolution of Polypropylene/poly(ethylene-Co-Octene) Blends: Insight into Toughening Mechanism. J. Polym. Res. 2014, 21, 618; https://doi.org/10.1007/s10965-014-0618-x.Search in Google Scholar

29. Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M. C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. J. Food Eng. 2012, 109, 513–519; https://doi.org/10.1016/j.jfoodeng.2011.10.031.Search in Google Scholar

30. Somani, R. H.; Hsiao, B. S.; Nogales, A.; Fruitwala, H.; Srinivas, S.; Tsou, A. H. Structure Development during Shear Flow Induced Crystallization of I-PP: In Situ Wide-Angle X-Ray Diffraction Study. Macromolecules 2001, 34, 5902–5909; https://doi.org/10.1021/ma0106191.Search in Google Scholar

31. Hodge, I. M. Effects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers. 4. Comparison of Five Polymers. Macromolecules 1983, 16, 898–902; https://doi.org/10.1021/ma00240a013.Search in Google Scholar

32. Silva-Leyton, R.; Quijada, R.; Bastías, R.; Zamora, N.; Olate-Moya, F.; Palza, H. Polyethylene/graphene Oxide Composites toward Multifunctional Active Packaging Films. Compos. Sci. Technol. 2019, 184; https://doi.org/10.1016/j.compscitech.2019.107888.Search in Google Scholar

33. Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl Alcohol) Composites. Macromolecules 2010, 43, 2357–2363; https://doi.org/10.1021/ma902862u.Search in Google Scholar

34. Istrate, O. M.; Paton, K. R.; Khan, U.; O’Neill, A.; Bell, A. P.; Coleman, J. N. Reinforcement in Melt-Processed Polymer–Graphene Composites at Extremely Low Graphene Loading Level. Carbon 2014, 78, 243–249; https://doi.org/10.1016/j.carbon.2014.06.077.Search in Google Scholar

35. Li, N.; Luo, P.; Liu, K.; Chen, L.; Wang, K.; Chen, F.; Fu, Q. Preparation and Properties of Poly(ethylene Terephthalate)/inorganic Whiskers Composites. J. Appl. Polym. Sci. 2011, 121, 604–611; https://doi.org/10.1002/app.33729.Search in Google Scholar

36. Al‐Jabareen, A.; Al‐Bustami, H.; Harel, H.; Marom, G. Improving the Oxygen Barrier Properties of Polyethylene Terephthalate by Graphite Nanoplatelets. J. Appl. Polym. Sci. 2013, 128, 1534–1539; https://doi.org/10.1002/app.38302.Search in Google Scholar

37. Bandla, S.; Hanan, J. C. Microstructure and Elastic Tensile Behavior of Polyethylene Terephthalate-Exfoliated Graphene Nanocomposites. J. Mater. Sci. 2012, 47, 876–882; https://doi.org/10.1007/s10853-011-5867-z.Search in Google Scholar

38. Palza, H.; Yazdani-Pedram, M. Effect of the Hierarchical Structure in Poly(propylene)/Clay Composites on Their Thermal Stability: from Single- to Multi‐Step Degradation Processes. Macromol. Mater. Eng. 2010, 295, 48–57; https://doi.org/10.1002/mame.200900236.Search in Google Scholar

39. Antony, G. J. M.; Bhavya, B. K.; Raja, S.; Aruna, S. T. Solvent Casting-Assisted Synthesis of Thermally Responsive Shape Memory Polymer and its Composites. Polym. Bull. 2023, 80, 12211–12232; https://doi.org/10.1007/s00289-022-04651-y.Search in Google Scholar

40. Seshweni, M. H. E.; Makhatha, M. E.; Botlhoko, O. J.; Obadele, B. A.; Vijayan, V.; Chiniwar, D. S.; Kumar, P.; Hm, V. Evaluation of Mechanical and Thermal Properties of Polypropylene-Based Nanocomposites Reinforced with Silica Nanofillers via Melt Processing Followed by Injection Molding. J. Compos. Sci. 2023, 7, 520; https://doi.org/10.3390/jcs7120520.Search in Google Scholar

41. Wu, C.; Gao, Y.; Liang, X.; Gubanski, M. S.; Wang, Q.; Bao, W.; Li, S. Manifestation of Interactions of Nano-Silica in Silicone Rubber Investigated by Low-Frequency Dielectric Spectroscopy and Mechanical Tests. Polym. (Basel) 2019, 11, 717; https://doi.org/10.3390/polym11040717.Search in Google Scholar PubMed PubMed Central

42. Awad, S. A.; Khalaf, E. M. Investigation of Improvement of Properties of Polypropylene Modified by Nano Silica Composites. Compos. Commun. 2019, 12, 59–63; https://doi.org/10.1016/j.coco.2018.12.008.Search in Google Scholar

43. Naseem, S.; Wießner, S.; Kühnert, I.; Leuteritz, A. Layered Double Hydroxide (MgFeAl-Ldh)-Based Polypropylene (PP) Nanocomposite: Mechanical Properties and Thermal Degradation. Polym. (Basel) 2021, 13, 3452; https://doi.org/10.3390/polym13193452.Search in Google Scholar PubMed PubMed Central

44. Huang, L.; Zhan, R.; Lu, Y. Mechanical Properties and Crystallization Behavior of Polypropylene/Nano-SiO2 Composites. J. Reinf. Plast. Compos. 2006, 25, 1001–1012; https://doi.org/10.1177/0731684406065131.Search in Google Scholar

45. Moradkhani, R.; Hosseini-Dastgerdi, Z.; Sirousazar, M. High-density Polyethylene/asphaltene Composites: Thermal, Mechanical and Morphological Properties. Polym. Polym. Compos. 2021, 29, 1528–1533; https://doi.org/10.1177/0967391120974577.Search in Google Scholar

46. Pour, R. H.; Hassan, A.; Soheilmoghaddam, M.; Bidsorkhi, H. C. Mechanical, Thermal, and Morphological Properties of Graphene Reinforced Polycarbonate/acrylonitrile Butadiene Styrene Nanocomposites. Polym. Compos. 2016, 37, 1633–1640; https://doi.org/10.1002/pc.23335.Search in Google Scholar

47. Li, Y.; Zhu, J.; Wei, S.; Ryu, J.; Sun, L.; Guo, Z. Poly(propylene)/graphene Nanoplatelet Nanocomposites: Melt Rheological Behavior and Thermal, Electrical, and Electronic Properties. Macromol. Chem. Phys. 2011, 212, 1951–1959; https://doi.org/10.1002/macp.201100263.Search in Google Scholar

48. Luyt, A. S.; Dramićanin, M. D.; Antić, Ž.; Djoković, V. Morphology, Mechanical and Thermal Properties of Composites of Polypropylene and Nanostructured Wollastonite Filler. Polym. Test. 2009, 28, 348–356; https://doi.org/10.1016/j.polymertesting.2009.01.010.Search in Google Scholar

49. Ajorloo, M.; Fasihi, M.; Ohshima, M.; Taki, K. How Are the Thermal Properties of Polypropylene/graphene Nanoplatelet Composites Affected by Polymer Chain Configuration and Size of Nanofiller? Mater. Des. 2019, 181; https://doi.org/10.1016/j.matdes.2019.108068.Search in Google Scholar

50. Jorgensen, J. H.; Turnidge, J. D. Susceptibility Test Methods: Dilution and Disk Diffusion Methods. In Manual of Clinical Microbiology; ASM Press: Washington, DC, USA, 2015; pp. 1253–1273.10.1128/9781555817381.ch71Search in Google Scholar

51. Medadurai, K.; Pandiarajan, N.; Balasubramanian, B.; Pandiarajan, B. Fabrication and Testing of Crop Waste Ceiba Pentandra Shell Powder Reinforced Biodegradable Composite Films. ACS Omega 2023, 8, 42762–42775; https://doi.org/10.1021/acsomega.3c05577.Search in Google Scholar PubMed PubMed Central

52. Raj, V. A.; Sankar, K.; Narayanasamy, P.; Moorthy, G. I.; Sivakumar, N.; Rajaram, S. K.; Karuppiah, P.; Shaik, M. R.; Alwarthan, A.; Oh, H. T.; Shaik, B. Development and Characterization of Bio-Based Composite Films for Food Packing Applications Using Boiled Rice Water and Pistacia Vera Shells. Polym. (Basel) 2023, 15, 3456; https://doi.org/10.3390/polym15163456.Search in Google Scholar PubMed PubMed Central

53. Thill, A.; Zeyons, O.; Spalla, O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A. M. Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Physico-Chemical Insight of the Cytotoxicity Mechanism. Environ. Sci. Technol. 2006, 40, 6151–6156; https://doi.org/10.1021/es060999b.Search in Google Scholar PubMed

54. Dickson, J. S.; Koohmaraie, M. Cell Surface Charge Characteristics and Their Relationship to Bacterial Attachment to Meat Surfaces. Appl. Environ. Microbiol. 1989, 55, 832–836; https://doi.org/10.1128/aem.55.4.832-836.1989.Search in Google Scholar PubMed PubMed Central

55. Huang, P.; Li, J.; Zhang, S.; Chen, C.; Han, Y.; Liu, N.; Xiao, Y.; Wang, H.; Zhang, M.; Yu, Q.; Liu, Y.; Wang, W. Effects of Lanthanum, Cerium, and Neodymium on the Nuclei and Mitochondria of Hepatocytes: Accumulation and Oxidative Damage. Environ. Toxicol. Pharmacol. 2011, 31, 25–32; https://doi.org/10.1016/j.etap.2010.09.001.Search in Google Scholar PubMed

56. Hewett, K. B.; Rosynek, M. P.; Lunsford, J. H. Effect of CH4 and CO2 on the Catalytic Formation of OH· Radicals over La2O3. Catal. Lett. 1997, 45, 125–128; https://doi.org/10.1023/a:1019099124988.10.1023/A:1019099124988Search in Google Scholar

57. Arumugam, A.; Karthikeyan, C.; Haja Hameed, A. S.; Gopinath, K.; Gowri, S.; Karthika, V. Synthesis of Cerium Oxide Nanoparticles Using Gloriosa Superba L. Leaf Extract and Their Structural, Optical and Antibacterial Properties. Mater. Sci. Eng. C. 2015, 49, 408–415; https://doi.org/10.1016/j.msec.2015.01.042.Search in Google Scholar PubMed

58. Tong, G.-X.; Du, F.-F.; Liang, Y.; Hu, Q.; Wu, R. N.; Guan, J. G.; Hu, X. Polymorphous ZnO Complex Architectures: Selective Synthesis, Mechanism, Surface Area and Zn-Polar Plane-Codetermining Antibacterial Activity. J. Mater. Chem. B 2013, 1, 454–463; https://doi.org/10.1039/c2tb00132b.Search in Google Scholar PubMed

59. Ayub, A.; Ikram, M.; Haider, A.; Shahzadi, I.; Ul-Hamid, A.; Shahzadi, A.; Algaradah, M. M.; Fouda, A. M.; Nabgan, W.; Imran, M. Enhanced Industrial Dye Degradation and Antibacterial Activity Supported by the Molecular Docking Study of Yttrium and Carbon Sphere-Doped Lanthanum Oxide Nanostructures. ACS Omega 2023, 8, 37564–37572; https://doi.org/10.1021/acsomega.3c05938.Search in Google Scholar PubMed PubMed Central

60. Zhang, M.; Zhan, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial Mechanism and Activity of Cerium Oxide Nanoparticles. Sci. China Mater. 2019, 62, 1727–1739; https://doi.org/10.1007/s40843-019-9471-7.Search in Google Scholar

Received: 2024-04-06
Accepted: 2024-08-20
Published Online: 2024-10-11
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0070/html
Scroll to top button