Home Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
Article
Licensed
Unlicensed Requires Authentication

Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface

  • Vijendra Kumar , Abhishek Barnwal , Rajesh K. Shukla and Jyoti Shakya ORCID logo EMAIL logo
Published/Copyright: May 30, 2022
Become an author with De Gruyter Brill

Abstract

In this article we discuss in detail the effective approaches to enhance the thermal conductivity in polymer composites. Numerical simulations show that maximizing interfacial area between filler and polymer enhances very significantly the effective thermal conductivity in composites. We show that among the different geometries thermal conductivity is high for those geometries for which the ratio of surface-area to volume is high. For fillers of a particular geometry, by maximizing its surface area without changing the volume fraction of the metallic filler, the effective thermal conductivity increases. Thus, the interfacial area between filler and polymer plays an important role in the enhancement of thermal conductivity. It is also observed that as this interfacial area increases, increase in effective thermal conductivity follows from linear to the logarithmic growth. It should be noted that to inherit the polymer properties there is a restriction on the upper bound of volume fraction of the fillers. The current study brings out an important step in this direction. Our results are technologically very important in designing composite polymers for better heat conduction and are very cost-effective. This study also provides a connection between the bulk and the surface area in effective determination of the thermal conductivity.


Corresponding author: Jyoti Shakya, Department of Physical Sciences, Indian Institute of Sciences, Bangalore 560012, India; and Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Zhai, S., Zhang, P., Xian, Y., Zeng, J., Shi, B. Int. J. Heat Mass Tran. 2018, 117, 358–374.10.1016/j.ijheatmasstransfer.2017.09.067Search in Google Scholar

2. Wang, X., Liu, H., Qiu, X., Wang, L. Appl. Therm. Eng. 2018, 141, 835–843.10.1016/j.applthermaleng.2018.06.022Search in Google Scholar

3. Wang, X. J., Zhang, L. Z., Pei, L. X. J. Appl. Polym. Sci. 2013, 131, 39550.10.1002/app.39550Search in Google Scholar

4. Zhang, L. Z., Wang, X. J., Quan, Y., Pei, L. X. Int. J. Heat Mass Tran. 2013, 64, 735–742.10.1016/j.ijheatmasstransfer.2013.05.021Search in Google Scholar

5. Zhang, L. Z., Wang, X. J., Pei, L. X. Int. J. Heat Mass Tran. 2012, 55, 7287–7296.10.1016/j.ijheatmasstransfer.2012.07.059Search in Google Scholar

6. Wang, X. J. Express Polym. Lett. 2014, 12, 920–931.10.3144/expresspolymlett.2014.93Search in Google Scholar

7. Glade, H., Dirik, M., Thomas, O. Polymer Composite Heat Exchangers; Springer: Cham, 2018; pp. 53–116.10.1007/978-3-319-71641-1_2Search in Google Scholar

8. Tong, Z., Liu, M., Bao, H. Int. J. Heat Mass Tran. 2016, 100, 355–361.10.1016/j.ijheatmasstransfer.2016.04.092Search in Google Scholar

9. Rao, Z., Chen, B., Zhao, J. Appl. Therm. Eng. 2017, 120, 444–452.10.1016/j.applthermaleng.2017.04.002Search in Google Scholar

10. Hussain, A. R. J., Alahyari, A. A., Eastman, S. A., Erkey, C. T., Johnston, S., Sobkowicz, M. J. Appl. Therm. Eng. 2017, 113, 1118–1127.10.1016/j.applthermaleng.2016.11.041Search in Google Scholar

11. Oppelt, T., Urbaneck, T., Bhme, H., Platzer, B. Appl. Therm. Eng. 2017, 115, 1–8.10.1016/j.applthermaleng.2016.12.130Search in Google Scholar

12. Guo, Y., Ruan, K., Shi, X., Yang, X. Gu, J. Compos. Sci. Technol. 2020, 193, 108134.10.1016/j.compscitech.2020.108134Search in Google Scholar

13. Nassar, A., Salem, M., El-Batanony, I., Nassar, E. J. Petrol. Sci. Eng. 2021, 23, 42–48.10.21608/jpme.2022.98987.1098Search in Google Scholar

14. Zhang, Y., Yang, F., Chen, Y., Niu, Z., Lu, P., Zhang, Y., Hu, Z., Liu, J. J. Electron. Mater. 2022, 51, 420–425.10.1007/s11664-021-09311-xSearch in Google Scholar

15. Chen, X., Su, Y., Reay, D., Riffat, S. Renew. Sustain. Energy Rev. 2016, 60, 1367–1386.10.1016/j.rser.2016.03.024Search in Google Scholar

16. Kim, H. S., Kim, J. H., Kim, W. Y., Lee, H. S., Kim, S. Y., Khil, M. S. Carbon 2017, 119, 40–46.10.1016/j.carbon.2017.04.013Search in Google Scholar

17. Gu, J., Yang, X., Lv, Z., Li, N., Liang, C., Zhang, Q. Int. J. Heat Mass Tran. 2016, 92, 15–22.10.1016/j.ijheatmasstransfer.2015.08.081Search in Google Scholar

18. Fu, Y. X., He, Z. X., Mo, D. C., Lu, S. Appl. Therm. Eng. 2014, 66, 493–498.10.1016/j.applthermaleng.2014.02.044Search in Google Scholar

19. Moreira, D. C., Sphaier, L. A., Reis, J. M. L., Nunes, L. C. S. Exp. Therm. Fluid Sci. 2011, 35, 1458–1462.10.1016/j.expthermflusci.2011.06.004Search in Google Scholar

20. Nayak, R., Dora, T., Satapathy, A. Comput. Mater. Sci. 2010, 48, 576–581.10.1016/j.commatsci.2010.02.025Search in Google Scholar

21. Wang, J., Carson, J. K., North, M. F., Cleland, D. J. Int. J. Heat Mass Tran. 2008, 51, 2389–2397.10.1016/j.ijheatmasstransfer.2007.08.028Search in Google Scholar

22. Liang, J. Z., Li, F. H. Polym. Test. 2007, 26, 419–424.10.1016/j.polymertesting.2006.12.014Search in Google Scholar

23. Maxwell, J. C. Unabridged; Dover: New York, 1954.Search in Google Scholar

24. Russell, H. W. J. Am. Ceram. Soc. 1935, 18, 1–5.10.1111/j.1151-2916.1935.tb19340.xSearch in Google Scholar

25. Baschirow, A. B., Manukian, A. M. Mech. Polim. 1974, 3, 564–566.Search in Google Scholar

26. Bruggeman, D. A. G. Ann. Phys. 1953, 24, 636–669.10.1214/aoms/1177728923Search in Google Scholar

27. Halpin, J. C. J. Compos. Mater. 1969, 3, 732–734.10.1177/002199836900300419Search in Google Scholar

28. Tavman, I. H., Akinci, H. Int. Commun. Heat Mass Tran. 2000, 27, 253–261.10.1016/S0735-1933(00)00106-8Search in Google Scholar

29. Agari, Y., Uno, T. J. Appl. Polym. Sci. 1986, 32, 5705–5712.10.1002/app.1986.070320702Search in Google Scholar

30. Agari, Y., Ueda, A., Nagai, S. J. Appl. Polym. Sci. 1991, 43, 1117–1124.10.1002/app.1991.070430612Search in Google Scholar

31. Agari, Y., Ueda, A., Nagai, S. J. Appl. Polym. Sci. 1994, 42, 1665–1669.10.1002/app.1991.070420621Search in Google Scholar

32. Lewis, T. B., Nielsen, L. T. J. Appl. Polym. Sci. 1970, 14, 1449–1471.10.1002/app.1970.070140604Search in Google Scholar

33. Nielsen, L. Ind. Eng. Chem. Fundam. 1974, 13, 17–20.10.1021/i160049a004Search in Google Scholar

34. Liang, J. Z., Li, F. H. Polym. Test. 2007, 26, 1025–1030.10.1016/j.polymertesting.2007.07.002Search in Google Scholar

35. Che, J., Wu, K., Lin, Y., Wang, K., Fu, Q. Compos. A 2017, 99, 32–40.10.1016/j.compositesa.2017.04.001Search in Google Scholar

36. Cheng, S. C., Vachon, R. I. Int. J. Heat Mass Tran. 1968, 12, 249–264.10.1016/0017-9310(69)90009-XSearch in Google Scholar

37. Zhou, B., Luo, W., Yang, J., Duan, X., Wen, Y., Zhou, H., Chen, R. Comput. Mater. Sci. 2017, 126, 35–42.10.1016/j.commatsci.2016.09.012Search in Google Scholar

38. Qian, L., Pang, X., Zhou, J., Yang, J., Lin, S., Hui, D. Compos. B 2017, 116, 291–297.10.1016/j.compositesb.2016.10.067Search in Google Scholar

39. Zhang, Y. F., Zhao, Y. H., Bai, S. L., Yuan, X. Compos. B 2016, 106, 324–331.10.1016/j.compositesb.2016.09.052Search in Google Scholar

40. Fang, W. Z., Chen, L., Gou, W. Q., Tao, W. Q. Int. J. Heat Mass Tran. 2016, 92, 120–130.10.1016/j.ijheatmasstransfer.2015.08.071Search in Google Scholar

41. Li, L., Zheng, H., Yuan, C., Hu, R., Luo, X. Heat Mass Tran. 2016, 52, 2813–2821.10.1007/s00231-016-1784-7Search in Google Scholar

42. Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., Ruch, D. Prog. Polym. Sci. 2016, 61, 1–28.10.1016/j.progpolymsci.2016.05.001Search in Google Scholar

43. Li, X., Fan, X., Zhu, Y., Li, J., Adams, J. M., Shen, S., Li, H. Comput. Mater. Sci. 2012, 63, 207–213.10.1016/j.commatsci.2012.06.034Search in Google Scholar

44. Yu, W., Xie, H., Yin, L., Zhao, J., Xia, L., Chen, L. Int. J. Therm. Sci. 2015, 91, 76–82.10.1016/j.ijthermalsci.2015.01.006Search in Google Scholar

45. Kim, S. Y., Noh, Y. J., Yu, J. Compos. A 2015, 69, 219–225.10.1016/j.compositesa.2014.11.018Search in Google Scholar

46. Cui, T., Li, Q., Xuan, Y., Zhang, P. Microelectron. Reliab. 2015, 55, 2569–2574.10.1016/j.microrel.2015.07.036Search in Google Scholar

47. Fiedler, T., Belova, I. V., Rawson, A., Murch, G. E. Comput. Mater. Sci. 2014, 95, 207–212.10.1016/j.commatsci.2014.07.029Search in Google Scholar

48. Gong, F., Bui, K., Papavassiliou, D. V., Duong, H. M. Carbon 2014, 78, 305–316.10.1016/j.carbon.2014.07.007Search in Google Scholar

49. Tsekmes, I. A., Kochetov, R., Morshuis, P. H. F., Smit, J. J. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 412–423.10.1109/TDEI.2013.004142Search in Google Scholar

50. Zhou, F., Cheng, G. Comput. Mater. Sci. 2014, 92, 157–162.10.1016/j.commatsci.2014.05.039Search in Google Scholar

51. Cao, J. P., Zhao, X., Zhao, J., Zha, J. W., Hu, G. H., Dang, Z. M. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924.10.1021/am401703mSearch in Google Scholar PubMed

52. Li, Z., Wang, D., Zhang, M., Zhao, L. Phys. Status Solidi 2014, 211, 2142–2149.10.1002/pssa.201431054Search in Google Scholar

53. Agrawal, A., Satapathy, A. J. Compos. Mater. 2014, 48, 3755–3769.10.1177/0021998313513205Search in Google Scholar

54. Kim, S. W., Choi, H. S., Lee, K. S. Mater. Res. Bull. 2014, 60, 843–848.10.1016/j.materresbull.2014.09.079Search in Google Scholar

55. Jang, D., Park, S. J., Yook, S. J., Lee, K. S. Int. J. Heat Mass Tran. 2014, 71, 496–502.10.1016/j.ijheatmasstransfer.2013.12.037Search in Google Scholar

56. Costa, V. A. F., Lopes, A. M. G. Appl. Therm. Eng. 2014, 70, 131–138.10.1016/j.applthermaleng.2014.04.068Search in Google Scholar

57. Shin, H., Yang, S., Chang, S., Yu, S., Cho, M. Polym. 2013, 54, 1543–1554.10.1016/j.polymer.2013.01.020Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2022-0005).


Received: 2022-01-26
Accepted: 2022-04-01
Published Online: 2022-05-30
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Material properties
  3. Research progress of low dielectric constant polymer materials
  4. Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
  5. Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
  6. Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
  7. Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
  8. Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
  9. Polylactic acid effectively reinforced with reduced graphitic oxide
  10. Preparation and assembly
  11. Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
  12. Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
  13. Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
  14. Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
  15. Engineering and Processing
  16. Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0005/pdf
Scroll to top button