Abstract
In this article we discuss in detail the effective approaches to enhance the thermal conductivity in polymer composites. Numerical simulations show that maximizing interfacial area between filler and polymer enhances very significantly the effective thermal conductivity in composites. We show that among the different geometries thermal conductivity is high for those geometries for which the ratio of surface-area to volume is high. For fillers of a particular geometry, by maximizing its surface area without changing the volume fraction of the metallic filler, the effective thermal conductivity increases. Thus, the interfacial area between filler and polymer plays an important role in the enhancement of thermal conductivity. It is also observed that as this interfacial area increases, increase in effective thermal conductivity follows from linear to the logarithmic growth. It should be noted that to inherit the polymer properties there is a restriction on the upper bound of volume fraction of the fillers. The current study brings out an important step in this direction. Our results are technologically very important in designing composite polymers for better heat conduction and are very cost-effective. This study also provides a connection between the bulk and the surface area in effective determination of the thermal conductivity.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.
References
1. Zhai, S., Zhang, P., Xian, Y., Zeng, J., Shi, B. Int. J. Heat Mass Tran. 2018, 117, 358–374.10.1016/j.ijheatmasstransfer.2017.09.067Search in Google Scholar
2. Wang, X., Liu, H., Qiu, X., Wang, L. Appl. Therm. Eng. 2018, 141, 835–843.10.1016/j.applthermaleng.2018.06.022Search in Google Scholar
3. Wang, X. J., Zhang, L. Z., Pei, L. X. J. Appl. Polym. Sci. 2013, 131, 39550.10.1002/app.39550Search in Google Scholar
4. Zhang, L. Z., Wang, X. J., Quan, Y., Pei, L. X. Int. J. Heat Mass Tran. 2013, 64, 735–742.10.1016/j.ijheatmasstransfer.2013.05.021Search in Google Scholar
5. Zhang, L. Z., Wang, X. J., Pei, L. X. Int. J. Heat Mass Tran. 2012, 55, 7287–7296.10.1016/j.ijheatmasstransfer.2012.07.059Search in Google Scholar
6. Wang, X. J. Express Polym. Lett. 2014, 12, 920–931.10.3144/expresspolymlett.2014.93Search in Google Scholar
7. Glade, H., Dirik, M., Thomas, O. Polymer Composite Heat Exchangers; Springer: Cham, 2018; pp. 53–116.10.1007/978-3-319-71641-1_2Search in Google Scholar
8. Tong, Z., Liu, M., Bao, H. Int. J. Heat Mass Tran. 2016, 100, 355–361.10.1016/j.ijheatmasstransfer.2016.04.092Search in Google Scholar
9. Rao, Z., Chen, B., Zhao, J. Appl. Therm. Eng. 2017, 120, 444–452.10.1016/j.applthermaleng.2017.04.002Search in Google Scholar
10. Hussain, A. R. J., Alahyari, A. A., Eastman, S. A., Erkey, C. T., Johnston, S., Sobkowicz, M. J. Appl. Therm. Eng. 2017, 113, 1118–1127.10.1016/j.applthermaleng.2016.11.041Search in Google Scholar
11. Oppelt, T., Urbaneck, T., Bhme, H., Platzer, B. Appl. Therm. Eng. 2017, 115, 1–8.10.1016/j.applthermaleng.2016.12.130Search in Google Scholar
12. Guo, Y., Ruan, K., Shi, X., Yang, X. Gu, J. Compos. Sci. Technol. 2020, 193, 108134.10.1016/j.compscitech.2020.108134Search in Google Scholar
13. Nassar, A., Salem, M., El-Batanony, I., Nassar, E. J. Petrol. Sci. Eng. 2021, 23, 42–48.10.21608/jpme.2022.98987.1098Search in Google Scholar
14. Zhang, Y., Yang, F., Chen, Y., Niu, Z., Lu, P., Zhang, Y., Hu, Z., Liu, J. J. Electron. Mater. 2022, 51, 420–425.10.1007/s11664-021-09311-xSearch in Google Scholar
15. Chen, X., Su, Y., Reay, D., Riffat, S. Renew. Sustain. Energy Rev. 2016, 60, 1367–1386.10.1016/j.rser.2016.03.024Search in Google Scholar
16. Kim, H. S., Kim, J. H., Kim, W. Y., Lee, H. S., Kim, S. Y., Khil, M. S. Carbon 2017, 119, 40–46.10.1016/j.carbon.2017.04.013Search in Google Scholar
17. Gu, J., Yang, X., Lv, Z., Li, N., Liang, C., Zhang, Q. Int. J. Heat Mass Tran. 2016, 92, 15–22.10.1016/j.ijheatmasstransfer.2015.08.081Search in Google Scholar
18. Fu, Y. X., He, Z. X., Mo, D. C., Lu, S. Appl. Therm. Eng. 2014, 66, 493–498.10.1016/j.applthermaleng.2014.02.044Search in Google Scholar
19. Moreira, D. C., Sphaier, L. A., Reis, J. M. L., Nunes, L. C. S. Exp. Therm. Fluid Sci. 2011, 35, 1458–1462.10.1016/j.expthermflusci.2011.06.004Search in Google Scholar
20. Nayak, R., Dora, T., Satapathy, A. Comput. Mater. Sci. 2010, 48, 576–581.10.1016/j.commatsci.2010.02.025Search in Google Scholar
21. Wang, J., Carson, J. K., North, M. F., Cleland, D. J. Int. J. Heat Mass Tran. 2008, 51, 2389–2397.10.1016/j.ijheatmasstransfer.2007.08.028Search in Google Scholar
22. Liang, J. Z., Li, F. H. Polym. Test. 2007, 26, 419–424.10.1016/j.polymertesting.2006.12.014Search in Google Scholar
23. Maxwell, J. C. Unabridged; Dover: New York, 1954.Search in Google Scholar
24. Russell, H. W. J. Am. Ceram. Soc. 1935, 18, 1–5.10.1111/j.1151-2916.1935.tb19340.xSearch in Google Scholar
25. Baschirow, A. B., Manukian, A. M. Mech. Polim. 1974, 3, 564–566.Search in Google Scholar
26. Bruggeman, D. A. G. Ann. Phys. 1953, 24, 636–669.10.1214/aoms/1177728923Search in Google Scholar
27. Halpin, J. C. J. Compos. Mater. 1969, 3, 732–734.10.1177/002199836900300419Search in Google Scholar
28. Tavman, I. H., Akinci, H. Int. Commun. Heat Mass Tran. 2000, 27, 253–261.10.1016/S0735-1933(00)00106-8Search in Google Scholar
29. Agari, Y., Uno, T. J. Appl. Polym. Sci. 1986, 32, 5705–5712.10.1002/app.1986.070320702Search in Google Scholar
30. Agari, Y., Ueda, A., Nagai, S. J. Appl. Polym. Sci. 1991, 43, 1117–1124.10.1002/app.1991.070430612Search in Google Scholar
31. Agari, Y., Ueda, A., Nagai, S. J. Appl. Polym. Sci. 1994, 42, 1665–1669.10.1002/app.1991.070420621Search in Google Scholar
32. Lewis, T. B., Nielsen, L. T. J. Appl. Polym. Sci. 1970, 14, 1449–1471.10.1002/app.1970.070140604Search in Google Scholar
33. Nielsen, L. Ind. Eng. Chem. Fundam. 1974, 13, 17–20.10.1021/i160049a004Search in Google Scholar
34. Liang, J. Z., Li, F. H. Polym. Test. 2007, 26, 1025–1030.10.1016/j.polymertesting.2007.07.002Search in Google Scholar
35. Che, J., Wu, K., Lin, Y., Wang, K., Fu, Q. Compos. A 2017, 99, 32–40.10.1016/j.compositesa.2017.04.001Search in Google Scholar
36. Cheng, S. C., Vachon, R. I. Int. J. Heat Mass Tran. 1968, 12, 249–264.10.1016/0017-9310(69)90009-XSearch in Google Scholar
37. Zhou, B., Luo, W., Yang, J., Duan, X., Wen, Y., Zhou, H., Chen, R. Comput. Mater. Sci. 2017, 126, 35–42.10.1016/j.commatsci.2016.09.012Search in Google Scholar
38. Qian, L., Pang, X., Zhou, J., Yang, J., Lin, S., Hui, D. Compos. B 2017, 116, 291–297.10.1016/j.compositesb.2016.10.067Search in Google Scholar
39. Zhang, Y. F., Zhao, Y. H., Bai, S. L., Yuan, X. Compos. B 2016, 106, 324–331.10.1016/j.compositesb.2016.09.052Search in Google Scholar
40. Fang, W. Z., Chen, L., Gou, W. Q., Tao, W. Q. Int. J. Heat Mass Tran. 2016, 92, 120–130.10.1016/j.ijheatmasstransfer.2015.08.071Search in Google Scholar
41. Li, L., Zheng, H., Yuan, C., Hu, R., Luo, X. Heat Mass Tran. 2016, 52, 2813–2821.10.1007/s00231-016-1784-7Search in Google Scholar
42. Burger, N., Laachachi, A., Ferriol, M., Lutz, M., Toniazzo, V., Ruch, D. Prog. Polym. Sci. 2016, 61, 1–28.10.1016/j.progpolymsci.2016.05.001Search in Google Scholar
43. Li, X., Fan, X., Zhu, Y., Li, J., Adams, J. M., Shen, S., Li, H. Comput. Mater. Sci. 2012, 63, 207–213.10.1016/j.commatsci.2012.06.034Search in Google Scholar
44. Yu, W., Xie, H., Yin, L., Zhao, J., Xia, L., Chen, L. Int. J. Therm. Sci. 2015, 91, 76–82.10.1016/j.ijthermalsci.2015.01.006Search in Google Scholar
45. Kim, S. Y., Noh, Y. J., Yu, J. Compos. A 2015, 69, 219–225.10.1016/j.compositesa.2014.11.018Search in Google Scholar
46. Cui, T., Li, Q., Xuan, Y., Zhang, P. Microelectron. Reliab. 2015, 55, 2569–2574.10.1016/j.microrel.2015.07.036Search in Google Scholar
47. Fiedler, T., Belova, I. V., Rawson, A., Murch, G. E. Comput. Mater. Sci. 2014, 95, 207–212.10.1016/j.commatsci.2014.07.029Search in Google Scholar
48. Gong, F., Bui, K., Papavassiliou, D. V., Duong, H. M. Carbon 2014, 78, 305–316.10.1016/j.carbon.2014.07.007Search in Google Scholar
49. Tsekmes, I. A., Kochetov, R., Morshuis, P. H. F., Smit, J. J. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 412–423.10.1109/TDEI.2013.004142Search in Google Scholar
50. Zhou, F., Cheng, G. Comput. Mater. Sci. 2014, 92, 157–162.10.1016/j.commatsci.2014.05.039Search in Google Scholar
51. Cao, J. P., Zhao, X., Zhao, J., Zha, J. W., Hu, G. H., Dang, Z. M. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924.10.1021/am401703mSearch in Google Scholar PubMed
52. Li, Z., Wang, D., Zhang, M., Zhao, L. Phys. Status Solidi 2014, 211, 2142–2149.10.1002/pssa.201431054Search in Google Scholar
53. Agrawal, A., Satapathy, A. J. Compos. Mater. 2014, 48, 3755–3769.10.1177/0021998313513205Search in Google Scholar
54. Kim, S. W., Choi, H. S., Lee, K. S. Mater. Res. Bull. 2014, 60, 843–848.10.1016/j.materresbull.2014.09.079Search in Google Scholar
55. Jang, D., Park, S. J., Yook, S. J., Lee, K. S. Int. J. Heat Mass Tran. 2014, 71, 496–502.10.1016/j.ijheatmasstransfer.2013.12.037Search in Google Scholar
56. Costa, V. A. F., Lopes, A. M. G. Appl. Therm. Eng. 2014, 70, 131–138.10.1016/j.applthermaleng.2014.04.068Search in Google Scholar
57. Shin, H., Yang, S., Chang, S., Yu, S., Cho, M. Polym. 2013, 54, 1543–1554.10.1016/j.polymer.2013.01.020Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2022-0005).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Research progress of low dielectric constant polymer materials
- Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
- Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
- Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
- Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
- Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
- Polylactic acid effectively reinforced with reduced graphitic oxide
- Preparation and assembly
- Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
- Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
- Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
- Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
- Engineering and Processing
- Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Articles in the same Issue
- Frontmatter
- Material properties
- Research progress of low dielectric constant polymer materials
- Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
- Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
- Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
- Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
- Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
- Polylactic acid effectively reinforced with reduced graphitic oxide
- Preparation and assembly
- Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
- Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
- Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
- Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
- Engineering and Processing
- Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers