Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
-
Zhiyi Zhang
, Zhichun Li , Fengbo Zhu , Lan Jia, Yudong Wang
, Jingxin Zhu
, Yanlong Ma , Hongwei He , Yuyuan Fan , Ying Zhang , Pengfei Fei and Yu Feng
Abstract
Polyacrylonitrile (PAN) was often used as a composite fiber matrix due to its good spinning characteristics. Herein, photoluminescent quantum dot-doped nanofibers with tunable diameters were successfully prepared using electrospinning by adding CdSe/CdS quantum dots (QDs) in PAN spinning solution. The morphology and structure of CdSe/CdS-PAN nanofibers were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR), and the mechanical and photoluminescent properties of CdSe/CdS-PAN nanofibers were investigated. Stable photoluminescent nanofibers were obtained owning to the improved stability of photoluminescent property of CdSe/CdS QDs in the PAN nanofiber. The stable photoluminescent CdSe/CdS-PAN nanofibers might be used for anti-fake labels, ultraviolet sensors, smart textiles and optoelectronic devices.
Funding source: Training Program of Taiyuan University of Technology
Award Identifier / Grant number: 2011
Funding source: Youth Foundation of Taiyuan University of Technology
Award Identifier / Grant number: 2017QN61
Funding source: Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering
Award Identifier / Grant number: 2021SX-TD008
Award Identifier / Grant number: 2021SX-TD010
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21908156
Funding source: Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi
Award Identifier / Grant number: 2019L0339
Funding source: Natural Science Foundation of Shanxi Province
Award Identifier / Grant number: 201801D121102
Award Identifier / Grant number: 201801D121360
Award Identifier / Grant number: 202103021224102
Funding source: Shanxi Province Science Foundation for Youths
Award Identifier / Grant number: 201901D211088
Award Identifier / Grant number: 201901D211095
Award Identifier / Grant number: 201901D211099
Funding source: Fund for Shanxi “1331 Project”
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work is financially supported by Shanxi Province Science Foundation for Youths (201901D211088, 201901D211095, 201901D211099), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2019L0339), Youth Foundation of Taiyuan University of Technology (2017QN61), Fund for Shanxi “1331 Project”, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-TD008, 2021SX-TD010), Natural Science Foundation of Shanxi Province (201801D121102, 201801D121360, 202103021224102), National Natural Science Foundation of China (21908156), and Undergraduate Innovation and Entrepreneurship Training Program of Taiyuan University of Technology (2011).
-
Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.
References
1. Doshi, J., Reneker, D. H. J. Electroceram. 1995, 35, 151–160. https://doi.org/10.1016/0304-3886(95)00041-8.Search in Google Scholar
2. Reneker, D. H., Chun, I. Nanotechnology 1996, 7, 216–223. https://doi.org/10.1088/0957-4484/7/3/009.Search in Google Scholar
3. He, J. H. J. Polym. Eng. 2008, 28, 1–4.Search in Google Scholar
4. Saiyasombat, C., Maensiri, S. J. Polym. Eng. 2008, 28, 5–18. https://doi.org/10.1515/polyeng.2008.28.1-2.5.Search in Google Scholar
5. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S. Compos. Sci. Technol. 2003, 63, 2223–2253. https://doi.org/10.1016/s0266-3538(03)00178-7.Search in Google Scholar
6. Yan, E., Wang, C., Huang, Z., Xin, Y., Tong, Y. Mater. Sci. Eng., A 2007, 464, 59. https://doi.org/10.1016/j.msea.2007.03.095.Search in Google Scholar
7. Zhang, H., Song, H., Yu, H., Li, S., Bai, X., Pan, G., Dai, Q., Wang, T., Li, W., Lu, S., Ren, X., Zhao, H., Kong, X. Appl. Phys. Lett. 2007, 90, 103103. https://doi.org/10.1063/1.2711380.Search in Google Scholar
8. Zhang, H., Song, H., Dong, B., Han, L., Pan, G., Bai, X., Fan, L., Zhao, H., Wang, F., Wang, F. J. Phys. Chem. C 2008, 112, 9155. https://doi.org/10.1021/jp7115005.Search in Google Scholar
9. Li, X. H., Shao, L. C., Liu, Y. C., Chu, X. Y., Wang, C. H., Zhang, B. X. J. Chem. Phys. 2008, 129. 114708. https://doi.org/10.1063/1.2977969.Search in Google Scholar PubMed
10. Liu, H., Edel, J. B., Bellan, L. M., Craighead, H. G. Small 2006, 2, 495. https://doi.org/10.1002/smll.200500432.Search in Google Scholar PubMed
11. Barzegar, F., Bello, A., Fabiane, M., Khamlich, S., Momodu, D., Taghizadeh, F., Dangbegnon, J., Manyala, N. J. Phys. Chem. Solid. 2015, 77, 139–145. https://doi.org/10.1016/j.jpcs.2014.09.015.Search in Google Scholar
12. Wang, S., Yang, Q., Du, J., Bai, J., Li, Y. J. Appl. Polym. Sci. 2007, 103, 2382–2386. https://doi.org/10.1002/app.25342.Search in Google Scholar
13. Schlecht, S., Tan, S., Yosef, M., Dersch, R., Wendorff, J. H., Jia, Z., Schaper, A. Chem. Mater. 2005, 17, 809. https://doi.org/10.1021/cm048417h.Search in Google Scholar
14. Tomczak, N., Gu, S., Han, M., Van Hulst, N. F., Vansco, G. J. Eur. Polym. J. 2006, 42, 2205. https://doi.org/10.1016/j.eurpolymj.2006.06.017.Search in Google Scholar
15. Li, D., Frey, M. W., Baeumner, A. J. J. Membr. Sci. 2006, 279, 354. https://doi.org/10.1016/j.memsci.2005.12.036.Search in Google Scholar
16. Kowalczyk, T., Nowicka, A., Elbaum, D., Kowalewski, T. A. Biomacromolecules 2008, 9, 2087. https://doi.org/10.1021/bm800421s.Search in Google Scholar PubMed
17. George, G., Luo, Z. Curr. Nanosci. 2020, 16, 321–362. https://doi.org/10.2174/1573413715666190112121113.Search in Google Scholar
18. Cui, X., Zhao, T., Yang, S., Xie, G., Zhang, Z., Zhang, Y., Sang, S., Lin, Z. H., Zhang, W., Zhang, H. Nano Energy 2020, 78, 105381. https://doi.org/10.1016/j.nanoen.2020.105381.Search in Google Scholar
19. Zhao, T., Cao, S., Yang, S., Guo, R., Sang, S., Zhang, H. Nano Energy 2019, 65, 104025. https://doi.org/10.1016/j.nanoen.2019.104025.Search in Google Scholar
20. Atchison, J. S., Schauer, C. L. Sensors 2011, 11, 10372. https://doi.org/10.3390/s111110372.Search in Google Scholar PubMed PubMed Central
21. Tatavarty, R., Hwang, E. T., Park, J. W., Kwak, J. H., Lee, J. O., Gu, M. B. React. Funct. Polym. 2011, 71, 104–108. https://doi.org/10.1016/j.reactfunctpolym.2010.11.029.Search in Google Scholar
22. Wen, H. Y., Hsu, H. C., Tsai, Y. T., Feng, W. K., Lin, C. L., Chiang, C. C. Polymers 2021, 13, 2696. https://doi.org/10.3390/polym13162696.Search in Google Scholar PubMed PubMed Central
23. He, W., Zhang, W., Zhang, J., Yu, P., Liu, P., Yang, G., Lei, H. Appl. Phys. Lett. 2021, 119, 111106. https://doi.org/10.1063/5.0061416.Search in Google Scholar
24. Das, H. T., Barai, P., Dutta, S., Das, N., Das, P., Roy, M., Barai, H. R., Barai, H. R. Polymers 2022, 14, 1053. https://doi.org/10.3390/polym14051053.Search in Google Scholar PubMed PubMed Central
25. Chao, H., Qin, L., Qxa, B., Yan, W. J. Membr. Sci. 2021, 641, 119911.10.7312/chi-19570Search in Google Scholar
26. Alam, A., Liu, Y., Park, M., Park, S., Kim, H. Polymer 2015, 59, 35–41. https://doi.org/10.1016/j.polymer.2014.12.061.Search in Google Scholar
27. Park, M., Lee, K. S., Shim, J., Liu, Y., Lee, C., Cho, H., Kim, M. J., Park, S., Yun, Y. J., Kim, H. Y., Son, D. I. Org. Electron. 2016, 36, 89–96. https://doi.org/10.1016/j.orgel.2016.05.030.Search in Google Scholar
28. Li, Z., Yao, W., Kong, L., Zhao, Y., Li, L. J. Am. Chem. Soc. 2015, 137, 12430–12433. https://doi.org/10.1021/jacs.5b05462.Search in Google Scholar PubMed
29. Andrew, J. S., Mack, J. J., Clarke, D. R. J. Mater. Res. 2008, 23, 1, 105–114. https://doi.org/10.1557/jmr.2008.0003.Search in Google Scholar
30. Zhou, Z., Lai, C., Zhang, L., Qian, Y., Hou, H., Reneker, D. H., Fong, H. Polymer 2009, 50, 2999–3006. https://doi.org/10.1016/j.polymer.2009.04.058.Search in Google Scholar
31. Sun, Z., Li, M., Jin, Z., Gong, Y., An, Q., Tuo, X., Guo, J. Int. J. Biol. Macromol. 2018, 120, 2552–2559. https://doi.org/10.1016/j.ijbiomac.2018.09.031.Search in Google Scholar PubMed
32. Jin, S., Yu, J., Zheng, Y., Wang, W., Xin, B., Kan, C. Nanomaterials 2018, 8, 821. https://doi.org/10.3390/nano8100821.Search in Google Scholar PubMed PubMed Central
33. Otto, T., Muller, M., Mundra, P., Lesnyak, V., Demir, H. V., Gaponik, N., Eychmuller, A. Nano Lett 2012, 12, 5348–5354. https://doi.org/10.1021/nl3027444.Search in Google Scholar PubMed
34. Koole, R., Liljeroth, P., de Mello Donega, C., Vanmaekelbergh, D., Meijerink, A. J. Am. Chem. Soc. 2006, 128, 10436–10441. https://doi.org/10.1021/ja061608w.Search in Google Scholar PubMed
35. Chang, Y., Yao, X., Zhang, Z., Jiang, D., Yu, Y., Mi, L., Wang, H., Li, G., Yu, D., Jiang, Y. J. Mater. Chem. C 2015, 3, 2831–2836. https://doi.org/10.1039/c4tc02806f.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0305).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Research progress of low dielectric constant polymer materials
- Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
- Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
- Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
- Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
- Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
- Polylactic acid effectively reinforced with reduced graphitic oxide
- Preparation and assembly
- Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
- Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
- Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
- Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
- Engineering and Processing
- Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Articles in the same Issue
- Frontmatter
- Material properties
- Research progress of low dielectric constant polymer materials
- Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
- Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
- Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
- Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
- Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
- Polylactic acid effectively reinforced with reduced graphitic oxide
- Preparation and assembly
- Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
- Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
- Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
- Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
- Engineering and Processing
- Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers