Home Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Article
Licensed
Unlicensed Requires Authentication

Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers

  • Zhiyi Zhang , Zhichun Li , Fengbo Zhu , Lan Jia EMAIL logo , Yudong Wang ORCID logo EMAIL logo , Jingxin Zhu , Yanlong Ma , Hongwei He , Yuyuan Fan , Ying Zhang , Pengfei Fei and Yu Feng
Published/Copyright: June 3, 2022
Become an author with De Gruyter Brill

Abstract

Polyacrylonitrile (PAN) was often used as a composite fiber matrix due to its good spinning characteristics. Herein, photoluminescent quantum dot-doped nanofibers with tunable diameters were successfully prepared using electrospinning by adding CdSe/CdS quantum dots (QDs) in PAN spinning solution. The morphology and structure of CdSe/CdS-PAN nanofibers were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR), and the mechanical and photoluminescent properties of CdSe/CdS-PAN nanofibers were investigated. Stable photoluminescent nanofibers were obtained owning to the improved stability of photoluminescent property of CdSe/CdS QDs in the PAN nanofiber. The stable photoluminescent CdSe/CdS-PAN nanofibers might be used for anti-fake labels, ultraviolet sensors, smart textiles and optoelectronic devices.


Corresponding authors: Lan Jia, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030001, China, E-mail: ; and Yudong Wang, College of Biological and Chemical engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China, E-mail:

Funding source: Training Program of Taiyuan University of Technology

Award Identifier / Grant number: 2011

Funding source: Youth Foundation of Taiyuan University of Technology

Award Identifier / Grant number: 2017QN61

Funding source: Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Award Identifier / Grant number: 2021SX-TD008

Award Identifier / Grant number: 2021SX-TD010

Award Identifier / Grant number: 21908156

Funding source: Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi

Award Identifier / Grant number: 2019L0339

Award Identifier / Grant number: 201801D121102

Award Identifier / Grant number: 201801D121360

Award Identifier / Grant number: 202103021224102

Award Identifier / Grant number: 201901D211088

Award Identifier / Grant number: 201901D211095

Award Identifier / Grant number: 201901D211099

Funding source: Fund for Shanxi “1331 Project”

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is financially supported by Shanxi Province Science Foundation for Youths (201901D211088, 201901D211095, 201901D211099), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2019L0339), Youth Foundation of Taiyuan University of Technology (2017QN61), Fund for Shanxi “1331 Project”, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-TD008, 2021SX-TD010), Natural Science Foundation of Shanxi Province (201801D121102, 201801D121360, 202103021224102), National Natural Science Foundation of China (21908156), and Undergraduate Innovation and Entrepreneurship Training Program of Taiyuan University of Technology (2011).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Doshi, J., Reneker, D. H. J. Electroceram. 1995, 35, 151–160. https://doi.org/10.1016/0304-3886(95)00041-8.Search in Google Scholar

2. Reneker, D. H., Chun, I. Nanotechnology 1996, 7, 216–223. https://doi.org/10.1088/0957-4484/7/3/009.Search in Google Scholar

3. He, J. H. J. Polym. Eng. 2008, 28, 1–4.Search in Google Scholar

4. Saiyasombat, C., Maensiri, S. J. Polym. Eng. 2008, 28, 5–18. https://doi.org/10.1515/polyeng.2008.28.1-2.5.Search in Google Scholar

5. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S. Compos. Sci. Technol. 2003, 63, 2223–2253. https://doi.org/10.1016/s0266-3538(03)00178-7.Search in Google Scholar

6. Yan, E., Wang, C., Huang, Z., Xin, Y., Tong, Y. Mater. Sci. Eng., A 2007, 464, 59. https://doi.org/10.1016/j.msea.2007.03.095.Search in Google Scholar

7. Zhang, H., Song, H., Yu, H., Li, S., Bai, X., Pan, G., Dai, Q., Wang, T., Li, W., Lu, S., Ren, X., Zhao, H., Kong, X. Appl. Phys. Lett. 2007, 90, 103103. https://doi.org/10.1063/1.2711380.Search in Google Scholar

8. Zhang, H., Song, H., Dong, B., Han, L., Pan, G., Bai, X., Fan, L., Zhao, H., Wang, F., Wang, F. J. Phys. Chem. C 2008, 112, 9155. https://doi.org/10.1021/jp7115005.Search in Google Scholar

9. Li, X. H., Shao, L. C., Liu, Y. C., Chu, X. Y., Wang, C. H., Zhang, B. X. J. Chem. Phys. 2008, 129. 114708. https://doi.org/10.1063/1.2977969.Search in Google Scholar PubMed

10. Liu, H., Edel, J. B., Bellan, L. M., Craighead, H. G. Small 2006, 2, 495. https://doi.org/10.1002/smll.200500432.Search in Google Scholar PubMed

11. Barzegar, F., Bello, A., Fabiane, M., Khamlich, S., Momodu, D., Taghizadeh, F., Dangbegnon, J., Manyala, N. J. Phys. Chem. Solid. 2015, 77, 139–145. https://doi.org/10.1016/j.jpcs.2014.09.015.Search in Google Scholar

12. Wang, S., Yang, Q., Du, J., Bai, J., Li, Y. J. Appl. Polym. Sci. 2007, 103, 2382–2386. https://doi.org/10.1002/app.25342.Search in Google Scholar

13. Schlecht, S., Tan, S., Yosef, M., Dersch, R., Wendorff, J. H., Jia, Z., Schaper, A. Chem. Mater. 2005, 17, 809. https://doi.org/10.1021/cm048417h.Search in Google Scholar

14. Tomczak, N., Gu, S., Han, M., Van Hulst, N. F., Vansco, G. J. Eur. Polym. J. 2006, 42, 2205. https://doi.org/10.1016/j.eurpolymj.2006.06.017.Search in Google Scholar

15. Li, D., Frey, M. W., Baeumner, A. J. J. Membr. Sci. 2006, 279, 354. https://doi.org/10.1016/j.memsci.2005.12.036.Search in Google Scholar

16. Kowalczyk, T., Nowicka, A., Elbaum, D., Kowalewski, T. A. Biomacromolecules 2008, 9, 2087. https://doi.org/10.1021/bm800421s.Search in Google Scholar PubMed

17. George, G., Luo, Z. Curr. Nanosci. 2020, 16, 321–362. https://doi.org/10.2174/1573413715666190112121113.Search in Google Scholar

18. Cui, X., Zhao, T., Yang, S., Xie, G., Zhang, Z., Zhang, Y., Sang, S., Lin, Z. H., Zhang, W., Zhang, H. Nano Energy 2020, 78, 105381. https://doi.org/10.1016/j.nanoen.2020.105381.Search in Google Scholar

19. Zhao, T., Cao, S., Yang, S., Guo, R., Sang, S., Zhang, H. Nano Energy 2019, 65, 104025. https://doi.org/10.1016/j.nanoen.2019.104025.Search in Google Scholar

20. Atchison, J. S., Schauer, C. L. Sensors 2011, 11, 10372. https://doi.org/10.3390/s111110372.Search in Google Scholar PubMed PubMed Central

21. Tatavarty, R., Hwang, E. T., Park, J. W., Kwak, J. H., Lee, J. O., Gu, M. B. React. Funct. Polym. 2011, 71, 104–108. https://doi.org/10.1016/j.reactfunctpolym.2010.11.029.Search in Google Scholar

22. Wen, H. Y., Hsu, H. C., Tsai, Y. T., Feng, W. K., Lin, C. L., Chiang, C. C. Polymers 2021, 13, 2696. https://doi.org/10.3390/polym13162696.Search in Google Scholar PubMed PubMed Central

23. He, W., Zhang, W., Zhang, J., Yu, P., Liu, P., Yang, G., Lei, H. Appl. Phys. Lett. 2021, 119, 111106. https://doi.org/10.1063/5.0061416.Search in Google Scholar

24. Das, H. T., Barai, P., Dutta, S., Das, N., Das, P., Roy, M., Barai, H. R., Barai, H. R. Polymers 2022, 14, 1053. https://doi.org/10.3390/polym14051053.Search in Google Scholar PubMed PubMed Central

25. Chao, H., Qin, L., Qxa, B., Yan, W. J. Membr. Sci. 2021, 641, 119911.10.7312/chi-19570Search in Google Scholar

26. Alam, A., Liu, Y., Park, M., Park, S., Kim, H. Polymer 2015, 59, 35–41. https://doi.org/10.1016/j.polymer.2014.12.061.Search in Google Scholar

27. Park, M., Lee, K. S., Shim, J., Liu, Y., Lee, C., Cho, H., Kim, M. J., Park, S., Yun, Y. J., Kim, H. Y., Son, D. I. Org. Electron. 2016, 36, 89–96. https://doi.org/10.1016/j.orgel.2016.05.030.Search in Google Scholar

28. Li, Z., Yao, W., Kong, L., Zhao, Y., Li, L. J. Am. Chem. Soc. 2015, 137, 12430–12433. https://doi.org/10.1021/jacs.5b05462.Search in Google Scholar PubMed

29. Andrew, J. S., Mack, J. J., Clarke, D. R. J. Mater. Res. 2008, 23, 1, 105–114. https://doi.org/10.1557/jmr.2008.0003.Search in Google Scholar

30. Zhou, Z., Lai, C., Zhang, L., Qian, Y., Hou, H., Reneker, D. H., Fong, H. Polymer 2009, 50, 2999–3006. https://doi.org/10.1016/j.polymer.2009.04.058.Search in Google Scholar

31. Sun, Z., Li, M., Jin, Z., Gong, Y., An, Q., Tuo, X., Guo, J. Int. J. Biol. Macromol. 2018, 120, 2552–2559. https://doi.org/10.1016/j.ijbiomac.2018.09.031.Search in Google Scholar PubMed

32. Jin, S., Yu, J., Zheng, Y., Wang, W., Xin, B., Kan, C. Nanomaterials 2018, 8, 821. https://doi.org/10.3390/nano8100821.Search in Google Scholar PubMed PubMed Central

33. Otto, T., Muller, M., Mundra, P., Lesnyak, V., Demir, H. V., Gaponik, N., Eychmuller, A. Nano Lett 2012, 12, 5348–5354. https://doi.org/10.1021/nl3027444.Search in Google Scholar PubMed

34. Koole, R., Liljeroth, P., de Mello Donega, C., Vanmaekelbergh, D., Meijerink, A. J. Am. Chem. Soc. 2006, 128, 10436–10441. https://doi.org/10.1021/ja061608w.Search in Google Scholar PubMed

35. Chang, Y., Yao, X., Zhang, Z., Jiang, D., Yu, Y., Mi, L., Wang, H., Li, G., Yu, D., Jiang, Y. J. Mater. Chem. C 2015, 3, 2831–2836. https://doi.org/10.1039/c4tc02806f.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0305).


Received: 2021-10-19
Accepted: 2022-04-11
Published Online: 2022-06-03
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Material properties
  3. Research progress of low dielectric constant polymer materials
  4. Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
  5. Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
  6. Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
  7. Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
  8. Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
  9. Polylactic acid effectively reinforced with reduced graphitic oxide
  10. Preparation and assembly
  11. Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
  12. Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
  13. Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
  14. Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
  15. Engineering and Processing
  16. Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0305/html
Scroll to top button