Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
-
Henrique Carvalho de Oliveira
, Alessandra Lavoratti , Iaci Miranda Pereira , Tamara Indrusiak Silva , Bluma Guenther Soares , Lilian Vanessa Rossa Beltramiand Ademir José Zattera
Abstract
The necessity of new electromagnetic interference shielding materials has expanded scientific research, especially with regard to microwave frequency range (X-band). In this context, polymer-based composites with nanoparticles – such as graphene – are promising electromagnetic interference shielding materials. In this work, epoxy resin/graphene nanoplatelets (NPG) composites with 0.10, 0.25 and 0.5% w/w were developed and applied to galvanized steel substrates. Dynamic-mechanical tests showed that the addition of NGPs increased the resin rigidity due to molecular restrictions of the organic chains imposed by the NPG. With the increase of the NPG concentration to 0.50%, the impact strength and the adhesion of the composites significantly decreased due to the formation and propagation of large cracks, followed by delamination. The epoxy resin sample containing 0.25% NPG presented the best microwave absorber performance with an increase of 48% in the attenuated energy and 80% in the reflection loss, respectively. Moreover, this sample extended the microwave absorption range to 10 GHz.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors would like to thank CAPES (Brazilian Coordination for the improvement of higher education personnel) and CNPq (the Brazilian National Council for Scientific and Technological Development) for the financial support.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Chen, Y., Li, J., Li, T., Zhang, L., Meng, F. Recent advances in graphene-based films for electromagnetic interference shielding: review and future prospects. Carbon 2021, 180, 163–184; https://doi.org/10.1016/j.carbon.2021.04.091.Search in Google Scholar
2. Yao, Y., Jin, S., Ma, X., Yu, R., Zou, H., Wang, H., Lv, X., Shu, Q. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos. Sci. Technol. 2020, 200, 108457; https://doi.org/10.1016/j.compscitech.2020.108457.Search in Google Scholar
3. Pang, K., Liu, X., Liu, Y., Chen, Y., Xu, Z., Shen, Y., Gao, C. Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon 2021, 179, 202–208; https://doi.org/10.1016/j.carbon.2021.04.027.Search in Google Scholar
4. Godoy, A. P., Amurim, L. G., Mendes, A., Gonçalves, A. E., Ferreira, A., de Andrade, C. S., Kotsilkova, R., Ivanov, E., Lavorgna, M., Saito, L. A. M., Ribeiro, H., Andrade, R. J. E. Enhancing the electromagnetic interference shielding of flexible films with reduced graphene oxide-based coatings. Prog. Org. Coating 2021, 158, 106341; https://doi.org/10.1016/j.porgcoat.2021.106341.Search in Google Scholar
5. Maruthi, N., Faisal, M., Raghavendra, N. Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synth. Met. 2021, 272, 116664; https://doi.org/10.1016/j.synthmet.2020.116664.Search in Google Scholar
6. Vyas, M. K., Chandra, A. Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band. J. Mater. Sci. 2019, 54, 1304–1325; https://doi.org/10.1007/s10853-018-2894-z.Search in Google Scholar
7. Sista, K. S., Dwarapudi, S., Kumar, D., Sinha, G. R., Moon, A. P. Carbonyl iron powders as absorption material for microwave interference shielding: a review. J. Alloys Compd. 2021, 853, 157251; https://doi.org/10.1016/j.jallcom.2020.157251.Search in Google Scholar
8. Sánchez-Hidalgo, R., Yuste-Sanchez, V., Verdejo, R., Blanco, C., Lopez-Manchado, M. A., Menéndez, R. Main structural features of graphene materials controlling the transport properties of epoxy resin-based composites. Eur. Polym. J. 2018, 17, 32287–32295; https://doi.org/10.1016/j.eurpolymj.2018.02.018.Search in Google Scholar
9. Jin, F.-L., Li, X., Park, S.-J. Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 2015, 29, 1–11; https://doi.org/10.1016/j.jiec.2015.03.026.Search in Google Scholar
10. Prolongo, S. G., Moriche, R., Jiménez-Suárez, A., Sánchez, M., Ureña, A. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur. Polym. J. 2014, 61, 206–214; https://doi.org/10.1016/j.eurpolymj.2014.09.022.Search in Google Scholar
11. Nobile, M. R., Guadagno, L., Naddeo, C., Vertuccio, L., Raimondo, M. Graphene/epoxy resins: rheological behavior and morphological analysis by atomic force microscopy (AFM). Mater. Today Proc. 2021, 34, 160–163; https://doi.org/10.1016/j.matpr.2020.02.139.Search in Google Scholar
12. Chen, L., Liu, H., Liu, Z., Song, Q. Thermal conductivity and anti-corrosion of epoxy resin based composite coatings doped with graphene and graphene oxide. Compos. Part C 2021, 5, 100124; https://doi.org/10.1016/j.jcomc.2021.100124.Search in Google Scholar
13. Mohammad, R., Bahram, R., Mohammad, M., Ghasem, B. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 2020, 161, 231–251; https://doi.org/10.1016/j.carbon.2020.01.082.Search in Google Scholar
14. Rahman, M., Mohammad, R., Sajjad, A., Ghasem, B., Bahram, R. Graphene oxide nanoplatforms reduction by green plant-sourced organic compounds for tion of an active anti-corrosion coating; experimental/electronic-scale DFT-D mod studies. Chem. Eng. J. 2020, 397, 125433; https://doi.org/10.1016/j.cej.2020.125433.Search in Google Scholar
15. Raimondo, M., Naddeo, C., Vertuccio, L., Lafdi, K., Sorrentino, A., Guadagno, L. Carbon-based aeronautical epoxy nanocomposites: effectiveness of atomic force microscopy (AFM) in investigating the dispersion of different carbonaceous nanoparticles. Polymers 2019, 11, 832; https://doi.org/10.3390/polym11050832.Search in Google Scholar PubMed PubMed Central
16. Nguyen, B. H., Nguyen, V. H. Promising applications of graphene and graphene-based nanostructures. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 023002; https://doi.org/10.1088/2043-6262/7/2/023002.Search in Google Scholar
17. Lavoratti, A., Zattera, A. J., Amico, S. C. Mechanical and dynamic-mechanical properties of silane-treated graphite nanoplatelet/epoxy composites. J. Appl. Polym. Sci. 2018, 135, 46724; https://doi.org/10.1002/APP.46724.Search in Google Scholar
18. Kunst, S. R., Beltrami, L. V. R., Cardoso, H. R. P., Veja, M. R. O., Menezes, T. L., Malfatti, C. F. The effects of curing temperature on bilayer and monolayer hybrid films: mechanical and electrochemical properties. Appl. Electrochem. 2014, 44, 759–771; https://doi.org/10.1007/s10800-014-0697-8.Search in Google Scholar
19. Beltrami, L. V. R., Kunst, S. R., Birriel, E. J., Malfatti, C. F. Magnetoelastic biosensors: corrosion protection of an FeNiMoB alloy from alkoxide precursors. Thin Solid Films 2017, 624, 83–94; https://doi.org/10.1016/j.tsf.2017.01.026.Search in Google Scholar
20. Chen, M., Zhu, Y., Pan, Y., Kou, H., Xu, H., Guo, J. Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater. Des. 2011, 32, 3013–3016; https://doi.org/10.1016/j.matdes.2010.12.043.Search in Google Scholar
21. Jabbar, A., Militký, J., Wiener, J., Kale, B. M., Ali, U., Rwawiire, S. Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Comp. Struct. 2017, 161, 340–349; https://doi.org/10.1016/j.compstruct.2016.11.062.Search in Google Scholar
22. Aradhana, R., Mohanty, S., Nayak, S. K. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 2018, 141, 109–123; https://doi.org/10.1016/j.polymer.2018.03.005.Search in Google Scholar
23. Koziol, M., Jesionek, M., Szperlich, P. Addition of a small amount of multiwalled carbon nanotubes and flaked graphene to epoxy resin. J. Reinforc. Plast. Compos. 2017, 36, 640–654; https://doi.org/10.1177/0731684416689144.Search in Google Scholar
24. Lavoratti, A., Zattera, A. J., Amico, S. C. Effect of carbonaceous nanofillers and triblock copolymers on the toughness of epoxy resin. Polym. Bull. 2021, 78, 5467–5480; https://doi.org/10.1007/s00289-020-03375-1.Search in Google Scholar
25. Verma, C., Olasunkanmi, L. O., Akpan, E. D., Quraishi, M. A., Dagdag, O., El Gouri, M., Sherif, E.-S. M., Ebenso, E. E. Epoxy resins as anticorrosive polymeric materials: a review. React. Funct. Polym. 2020, 156, 104741; https://doi.org/10.1016/j.reactfunctpolym.2020.104741.Search in Google Scholar
26. Wei, H., Xia, J., Zhou, W., Zhou, L., Hussain, G., Li, Q., Ostrikov, K. Adhesion and cohesion of epoxy-based industrial composite coatings. Comp. Part B: Eng. 2020, 193, 108035; https://doi.org/10.1016/j.compositesb.2020.108035.Search in Google Scholar
27. Chandrasekaran, S., Seidel, C., Schulte, K. Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur. Polym. J. 2013, 49, 3878–3888; https://doi.org/10.1016/j.eurpolymj.2013.10.008.Search in Google Scholar
28. Monti, M., Rallini, M., Puglia, D., Peponi, L., Torre, L., Kenny, J. M. Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Composites Part A 2013, 46, 166–172; https://doi.org/10.1016/j.compositesa.2012.11.005.Search in Google Scholar
29. Liu, H., Liang, C., Chen, J., Huang, Y., Cheng, F., Wen, F., Xu, B., Wang, B. Novel 3D network porous graphene nanoplatelets /Fe3O4/ epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109; https://doi.org/10.1016/j.compscitech.2018.11.005.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Research progress of low dielectric constant polymer materials
- Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
- Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
- Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
- Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
- Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
- Polylactic acid effectively reinforced with reduced graphitic oxide
- Preparation and assembly
- Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
- Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
- Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
- Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
- Engineering and Processing
- Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Articles in the same Issue
- Frontmatter
- Material properties
- Research progress of low dielectric constant polymer materials
- Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
- Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
- Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
- Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
- Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
- Polylactic acid effectively reinforced with reduced graphitic oxide
- Preparation and assembly
- Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
- Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
- Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
- Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
- Engineering and Processing
- Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers