Home Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
Article
Licensed
Unlicensed Requires Authentication

Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity

  • Minghua Li EMAIL logo , Jiajia Jiang , Xiaoyu Lu , Jie Gao , Dongming Jiang and Lei Gao
Published/Copyright: June 13, 2022
Become an author with De Gruyter Brill

Abstract

Polyurethane chain was successfully grafted onto carbon nanotubes, affording polyurethane-functionalized multiwalled carbon nanotubes (P-MWCNTs) with super-hydrophobic property, which shows improved abrasive resistance obviously and enhanced thermal conductivity for natural rubber (NR) vulcanizate. Under the optimized conditions, the akron abrasion loss of NR vulcanizate combined with 5 parts per hundred rubber (5 phr) P-MWCNTs is 0.9 cm3/1.61 km compared to 2.96 cm3/1.61 km of pristine NR vulcanizate. The thermal conductivity of NR vulcanizate combined with 5 phr P-MWCNTs has been improved by 40.3% compared to that of pristine NR vulcanizate. The decreased height of the maximum tan δ peak shows that P-MWCNTs can reduce the heat buildup and damping capability of NR/P-MWCNTs composites. The good dispersion of P-MWCNTs with a continuous network, particularly at high loading (5 phr) in the NR composites, was evidenced from transmission electron microscopy (TEM).


Corresponding author: Minghua Li, School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei, Anhui 230601, China; and Anhui Provincial Engineering Research Center for Green Coatings High-performance Additives, Hefei University, 99 Jinxiu Avenue, Hefei, Anhui 230601, China, E-mail:

Funding source: Anhui province university outstanding youth talent support program

Award Identifier / Grant number: gxyq2018070

Funding source: Anhui provincial natural science foundation

Award Identifier / Grant number: 1808085ME144

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We thank Anhui Provincial Natural Science Foundation (no. 1808085ME144) and Anhui Province University Outstanding Youth Talent Support Program (no. gxyq2018070).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Preeyanuch, J., Pattana, K., Supa, W., Chuong, H., Nittaya, R. Cut growth and abrasion behaviour, and morphology of natural rubber filled with MWCNT and MWCNT/carbon black. Polym. Test. 2015, 41, 172–183.10.1016/j.polymertesting.2014.11.009Search in Google Scholar

2. Weng, G. S., Huang, G. S., Qu, L. L., Nie, Y. J., Wu, J. R. Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J. Phys. Chem. B 2010, 114, 7179–7188. https://doi.org/10.1021/jp100920g.Search in Google Scholar PubMed

3. Le, H. H., Abhijeet, S., Ilisch, S., Klehm, J., Henning, S., Beiner, M., Sarkawi, S. S., Dierkes, W., Das, A., Fischer, D., Stöckelhuber, K.-W., Wiessner, S., Khatiwada, S.P., Adhikari, R., Pham, T., Heinrich, G., Radusch, H.-J. The role of linked phospholipids in the rubber-filler interaction in carbon nanotube (CNT) filled natural rubber (NR) composites. Polymer 2014, 55, 4738–4747; https://doi.org/10.1016/j.polymer.2014.07.043.Search in Google Scholar

4. Bokobza, L. Multiwall carbon nanotube elastomeric composites: a review. Polymer 2007, 48, 4907–4920. https://doi.org/10.1016/j.polymer.2007.06.046.Search in Google Scholar

5. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. https://doi.org/10.1038/354056a0.Search in Google Scholar

6. Ponnamma, D., Sadasivuni, K. K., Grohens, Y., Guo, Q., Thomas, S. Carbon nanotube based elastomer composites- an approach towards multifunctional materials. J. Mater. Chem. C. 2014, 2, 8446–8485. https://doi.org/10.1039/c4tc01037j.Search in Google Scholar

7. Pilar, B- O., Bernal, M. M., Antonio, G- J., Posadas, P., Rodrigo, N., Juan, L. V. New insight into structure-property relationships of natural rubber and styrene-butadiene rubber nanocomposites filled with MWCNT. Polymer 2020, 201, 122604.10.1016/j.polymer.2020.122604Search in Google Scholar

8. Jiang, H. X., Ni, Q. Q., Natsuki, T. Design and evaluation of the interface between carbon nanotubes and natural rubber. Polym. Compos. 2011, 32, 236–242. https://doi.org/10.1002/pc.21040.Search in Google Scholar

9. Peng, Z., Feng, C. F., Luo, Y. Y., Li, Y. Z., Yi, Z. F., Kong, L. X. Natural rubber/multiwalled carbon nanotube composites developed with a combined self-assembly and latex compounding technique. J. Appl. Polym. Sci. 2012, 125, 3920–3928. https://doi.org/10.1002/app.36389.Search in Google Scholar

10. Wang, J. Y., Jia, H. B., Ding, L. F., Dai, X., Fei, X., Li, F., Gong, X. D. Utilization of silane functionalized carbon nanotubes-silica hybrids as novel reinforcing fillers for solution styrene butadiene rubber. Polym. Compos. 2013, 34, 690–696. https://doi.org/10.1002/pc.22472.Search in Google Scholar

11. Peddini, S. K., Bosnyak, C. P., Henderson, N. M., Ellison, C. J., Paul, D. R. Nanocomposites from styrene–butadiene rubber (SBR) and multiwall carbon nanotubes (MWCNT) part 2: mechanical properties. Polymer 2015, 56, 443–451. https://doi.org/10.1016/j.polymer.2014.11.006.Search in Google Scholar

12. Costa, P., Ribeiro, S., Lanceros-Mendez, S. Mechanical vs. electrical hysteresis of carbon nanotube/styrene–butadiene–styrene composites and their influence in the electromechanical response. Compos. Sci. Technol. 2015, 109, 1–5. https://doi.org/10.1016/j.compscitech.2015.01.006.Search in Google Scholar

13. Shanmugharaj, A. M., Ryu, S. H. Influence of aminosilane-functionalized carbon nanotubes on the rheometric, mechanical, electrical and thermal degradation properties of epoxidized natural rubber nanocomposites. Polym. Int. 2013, 62, 1433–1441. https://doi.org/10.1002/pi.4437.Search in Google Scholar

14. Knite, M., Tupureina, V., Fuith, A., Zavickis, J., Teteris, V. Polyisoprene-multi-wall carbon nanotube composites for sensing strain. Mater. Sci. Eng. C 2006, 27, 1125–1128.10.1016/j.msec.2006.08.016Search in Google Scholar

15. Tang, Y. Z., Ma, L., He, Y., Chen, H., Jiang, Y., Xu, J. Preparation and performance evaluation of natural rubber composites with aluminum nitride and aligned carbon nanotubes. Polym. Sci. 2019, 61, 366–374. https://doi.org/10.1134/s0965545x19030180.Search in Google Scholar

16. Szadkowski, B., Marzec, A., Zaborski, M. Effect of different carbon fillers on the properties of nitrile rubber composites. Compos. Interface 2018, 26, 729–750; https://doi.org/10.1080/09276440.2018.1534474.Search in Google Scholar

17. Gao, J., He, Y., Gong, X. A novel slurry blending method for a uniform dispersion of carbon nanotubes in natural rubber composites. Results Phys. 2018, 9, 493–499. https://doi.org/10.1016/j.rinp.2018.02.074.Search in Google Scholar

18. Sreenath, P. R., Mandal, S., Singh, S., Panigrahi, H., Das, P., Bhowmick, A. K., Kumar, K. D. Unique approach to debundle carbon nanotubes in polymer matrix using carbon dots for enhanced properties. Eur. Polym. J. 2020, 123, 109454. https://doi.org/10.1016/j.eurpolymj.2019.109454.Search in Google Scholar

19. Mishra, K., Singh, R. P. Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites. Compos. B Eng. 2019, 162, 425–432.10.1016/j.compositesb.2018.12.134Search in Google Scholar

20. Bai, L., Bai, Y., Zheng, J. Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes. J. Mater. Sci. 2017, 52, 7516–7529. https://doi.org/10.1007/s10853-017-0984-y.Search in Google Scholar

21. Ismail, H., Ramly, A. F., Othman, N. Effects of silica/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites. J. Appl. Polym. Sci. 2013, 128, 2433–2438. https://doi.org/10.1002/app.38298.Search in Google Scholar

22. Li, M. H., Tu, W. X., Chen, X. F., Wang, H. H., Chen, J. Y. NRSBR composites reinforced with organically MWCNTs simultaneous improvement of tensile strength and elongation, and enhanced thermal stability. J. Polym. Eng. 2016, 36, 813–818. https://doi.org/10.1515/polyeng-2015-0136.Search in Google Scholar

23. Li, M. H., Xu, Z. Y., Chen, J. Y., Zhu, S.-E. Covalent functionalization of multiwalled carbon nanotubes with super-hydrophobic property. J. Polym. Eng. 2018, 38, 537–543. https://doi.org/10.1515/polyeng-2017-0096.Search in Google Scholar

24. Firoozeh, D., Maryam, K. A review of natural rubber nanocomposites based on carbon nanotubes. J. Rubber Res. 2018, 21, 293–310.10.1007/BF03449176Search in Google Scholar

25. Gopi, J. A., Patel, S. K., Chandra, A. K., Tripathy, D. K. SBR-clay-carbon black hybrid nanocomposites for tire tread application. J. Polym. Res. 2011, 18, 1625–1634. https://doi.org/10.1007/s10965-011-9567-9.Search in Google Scholar

26. Kumar, K. D., Tsou, A. H., Bhowmick, A. K. Unique tackification behavior of needle-like sepiolite nanoclay in brominated isobutylene-co-p-methylstyrene (BIMS) rubber. Macromolecules 2010, 43, 4184–4193. https://doi.org/10.1021/ma100472r.Search in Google Scholar

27. Das, A., Stockelhuber, K. W., Jurk, R., Saphiannikova, M., Fritzsche, J., Lorenz, H. Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 2008, 49, 5276–5283. https://doi.org/10.1016/j.polymer.2008.09.031.Search in Google Scholar

28. Han, Z., Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011, 36, 914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004.Search in Google Scholar

29. Yin, Q., Wen, Y. W., Jia, H. B., Hong, L., Ji, Q. M., Xu, Z. D. Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes. J. Mater. Sci. 2017, 52, 10814–10828; https://doi.org/10.1007/s10853-017-1251-y.Search in Google Scholar

30. Araby, S., Meng, Q., Zhang, L., Kang, H., Majewski, P., Tang, Y., Ma, J. Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 2014, 55, 201–210. https://doi.org/10.1016/j.polymer.2013.11.032.Search in Google Scholar

31. Zhou, S., Xu, J., Yang, Q. H., Chiang, S., Li, B., Du, H., Xu, C., Kang, F. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 2013, 57, 452–459. https://doi.org/10.1016/j.carbon.2013.02.018.Search in Google Scholar

32. An, D., Duan, X. Y., Cheng, S. S., Zhang, Z. Y., Yang, B., Lian, Q. S., Li, J. X., Sun, Z. J., Liu, Y. Q., Wong, C-P. Enhanced thermal conductivity of natural rubber based thermal interfacial materials by constructing covalent bonds and three-dimensional networks. Composites Part A 2020, 135, 105928. https://doi.org/10.1016/j.compositesa.2020.105928.Search in Google Scholar

Received: 2021-10-03
Accepted: 2022-03-29
Published Online: 2022-06-13
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Material properties
  3. Research progress of low dielectric constant polymer materials
  4. Natural rubber reinforced with super-hydrophobic multiwalled carbon nanotubes: obvious improved abrasive resistance and enhanced thermal conductivity
  5. Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance
  6. Enhancement of thermal conductivity in polymer composites by maximizing surface-contact area of polymer-filler interface
  7. Dynamic characterization of the magnetomechanical properties of off axis anisotropic magnetorheological elastomer
  8. Investigation of optical and biocompatible properties of polyethylene glycol-aspirin loaded commercial pure titanium for cardiovascular device applications
  9. Polylactic acid effectively reinforced with reduced graphitic oxide
  10. Preparation and assembly
  11. Assembled hybrid films based on sepiolite, phytic acid, polyaspartic acid and Fe3+ for flame-retardant cotton fabric
  12. Fabrication, characterization, and performance of poly (aryl ether nitrile) flat sheet ultrafiltration membranes with polyvinyl pyrrolidone as additives
  13. Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater
  14. Chitosan nanoparticles encapsulated into PLA/gelatin fibers for bFGF delivery
  15. Engineering and Processing
  16. Stable photoluminescent electrospun CdSe/CdS quantum dots-doped polyacrylonitrile composite nanofibers
Downloaded on 28.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0233/pdf
Scroll to top button