Abstract
Following the stipulation to replace nondegradable plastics with biodegradable materials in China, cost-effective and water-resistant packaging materials have become increasingly necessary. In this work, lignin reinforced thermoplastic cassava starch (TPS) pieces were prepared by filling glycerol and lignin powder into starch via a melt blending process and then being pressed into thin pieces. A mechanical properties test showed that following the addition of 3 wt% lignin, the tensile strength of the TPS piece was improved to 16.15 MPa from 3.71 MPa of the original TPS piece. The porous structures of the lignin powder tie the TPS macromolecular chains, induce higher crystallization, and thus provide higher tensile strength and lower elongation at break. After sandwiching two pieces of poly (butylene adipateco-terephthalate) (PBAT)/peanut shell powder composite thin film to each side of the TPS piece, the PBAT/TPS/PBAT sandwich gains excellent water resistance properties. However, as soon as the sandwich piece is cut into smaller ones, they absorb water quickly, implying such pieces can be biodegraded rapidly. These characteristics make it especially suitable for use in the preparation of cabinet waste bags, which are generally stirred into organic fertilizer with the cabinet waste. Slow degradation may negatively affect soil health and farm production.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: We thank Biopolymer Key Laboratory of Zhejiang province for supplying open funds and Shaoxing Starch Company (Zhejiang, China) for providing PBAT/peanut shell powder film.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Sessini, V., Arrieta, M. P., Raquez, J. M., Dubois, P., Kenny, J. M., Peponi, L. Polym. Degrad. Stab. 2019, 159, 184–198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025.Suche in Google Scholar
2. Tawakkal, I. S. M. A., Cran, M. J., Miltz, J., Bigger, S. W. J. Food Sci. 2014, 79, 1477–1490. https://doi.org/10.1111/1750-3841.12534.Suche in Google Scholar PubMed
3. Xie, F. W., Pollet, E., Halley, P. J., Averous, L. Prog. Polym. Sci. 2013, 38, 1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002.Suche in Google Scholar
4. Yang, J. H., Tang, K. K., Qin, G. Q., Chen, Y. X., Peng, L., Wang, X., Xiao, H. N., Xia, Q. Y. Carbohydr. Polym. 2017, 166, 256–263. https://doi.org/10.1016/j.carbpol.2017.03.001.Suche in Google Scholar PubMed
5. Song, A. X., Mao, Y. H., Siu, K. C., Wu, J. Y. Int. J. Biol. Macromol. 2018, 111, 587–594. https://doi.org/10.1016/j.ijbiomac.2018.01.052.Suche in Google Scholar PubMed
6. Giroto, A. S., Garcia, R. H. S., Colnago, L. A., Klamczynski, A., Glenn, G. M., Ribeiro, C. Int. J. Biol. Macromol. 2020, 144, 143–150. https://doi.org/10.1016/j.ijbiomac.2019.12.094.Suche in Google Scholar PubMed
7. Mehboob, S., Ali, T. M., Sheikh, M., Hasnain, A. Int. J. Biol. Macromol. 2020, 155, 786–794. https://doi.org/10.1016/j.ijbiomac.2020.03.144.Suche in Google Scholar PubMed
8. Wang, X., Huang, L. X., Zhang, C. H., Deng, Y. J., Xie, P. J., Liu, L. J., Cheng, J. Carbohydr. Polym. 2020, 240, 116292. https://doi.org/10.1016/j.carbpol.2020.116292.Suche in Google Scholar PubMed
9. Clasen, S. H., Muller, C. M. O., Parize, A. L., Pires, A. T. N. Carbohydr. Polym. 2018, 180, 348–353. https://doi.org/10.1016/j.carbpol.2017.10.016.Suche in Google Scholar PubMed
10. Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., Zavareze, E. D. R. Food Chem. 2017, 221, 1546–1559. https://doi.org/10.1016/j.foodchem.2016.10.138.Suche in Google Scholar PubMed
11. Cuenca, P., Ferrero, S., Albani, O. Food Hydrocolloids 2020, 100, 105430. https://doi.org/10.1016/j.foodhyd.2019.105430.Suche in Google Scholar
12. Masina, N., Choonara, Y. E., Kumar, P., Du Toit, L. C., Govender, M., Indermun, S., Pillay, V. Carbohydr. Polym. 2017, 157, 1226–1236. https://doi.org/10.1016/j.carbpol.2016.09.094.Suche in Google Scholar PubMed
13. Ni, S. Z., Wang, B. B., Zhang, H., Zhang, Y. C., Liu, Z. L., Wu, W. B., Xiao, H. N., Dai, H. Q. Eur. Polym. J. 2019, 110, 385–393. https://doi.org/10.1016/j.eurpolymj.2018.12.003.Suche in Google Scholar
14. Xu, J. T., Andrews, T. D., Shi, Y. C. Starch-Starke 2020, 72, 1900238. https://doi.org/10.1002/star.201900238.Suche in Google Scholar
15. Hu, X. T., Jia, X., Zhi, C. H., Jin, Z. Y., Miao, M. Int. J. Biol. Macromol. 2019, 130, 197–202. https://doi.org/10.1016/j.ijbiomac.2019.02.144.Suche in Google Scholar PubMed
16. Dai, L. M., Zhang, J., Cheng, F. Int. J. Biol. Macromol. 2019, 132, 897–905. https://doi.org/10.1016/j.ijbiomac.2019.03.197.Suche in Google Scholar PubMed
17. Abdullah, Z. W., Dong, Y. J. Mater. Sci. 2018, 53, 15319–15339. https://doi.org/10.1007/s10853-018-2613-9.Suche in Google Scholar
18. Tavares, K. M., De Campos, A., Luchesi, B. R., Resende, A. A., De Oliveira, J. E., Marconcini, J. M. Carbohydr. Polym. 2020, 246, 116521. https://doi.org/10.1016/j.carbpol.2020.116521.Suche in Google Scholar PubMed
19. Liu, W., Wang, Z., Liu, J., Dai, B. F., Hu, S. S., Hong, R. F., Xie, H., Li, Z. H., Chen, Y., Zeng, G. S. Food Hydrocoll. 2020, 108, 106006. https://doi.org/10.1016/j.foodhyd.2020.106006.Suche in Google Scholar
20. Dang, K. M., Yoksan, R. Carbohydr. Polym. 2015, 115, 575–581. https://doi.org/10.1016/j.carbpol.2014.09.005.Suche in Google Scholar PubMed
21. Shi, Z., Reddy, N., Shen, L., Hou, X. L., Yang, Y. Q. J. Agric. Food Chem. 2014, 62, 4668–4676. https://doi.org/10.1021/jf5013709.Suche in Google Scholar PubMed
22. Brandelero, R. P. H., Grossmann, M. V. E., Yamashita, F. Carbohydr. Polym. 2011, 86, 1344–1350. https://doi.org/10.1016/j.carbpol.2011.06.045.Suche in Google Scholar
23. Bai, J., Pei, H. J., Zhou, X. P., Xie, X. L. Eur. Polym. J. 2021, 143, 110198. https://doi.org/10.1016/j.eurpolymj.2020.110198.Suche in Google Scholar
24. Olivato, J. B., Grossmann, M. V. E., Yamashita, F., EirasbL, D., Pessanb, L. A. Carbohydr. Polym. 2012, 87, 2614–2618. https://doi.org/10.1016/j.carbpol.2011.11.035.Suche in Google Scholar
25. Cunha, M., Fernandes, B., Covas, J. A., Vicente, A. A., Hilliou, L., J. Appl. Polym. Sci. 2016, 133, 42165. https://doi.org/10.1002/app.42165.Suche in Google Scholar
26. Zhang, C. W., Nair, S. S., Chen, H. Y., Yan, N., Farnood, R., Li, F. Y. Carbohydr. Polym. 2020, 230, 115626. https://doi.org/10.1016/j.carbpol.2019.115626.Suche in Google Scholar PubMed
27. Travalini, A. P., Lamsal, B., Magalhaes, W. L. E., Demiate, I. M. Int. J. Biol. Macromol. 2019, 139, 1151–1161. https://doi.org/10.1016/j.ijbiomac.2019.08.115.Suche in Google Scholar PubMed
28. Fang, S. F., Wu, S. W., Huang, J., Wang, D., Tang, Z. H., Guo, B. C., Zhang, L. Q. Ind. Eng. Chem. Res. 2020, 59, 21047–21057. https://doi.org/10.1021/acs.iecr.0c04242.Suche in Google Scholar
29. Tavares, L. B., Ito, N. M., Salvadori, M. C., dos Santos, D. J. Rosa Polym Test. DS. 2018, 67, 169–176. https://doi.org/10.1016/j.polymertesting.2018.03.004.Suche in Google Scholar
30. Bodirlau, R., Teaca, C. A., Spiridon, I. Compos. B. Eng. 2013, 44, 575–583. https://doi.org/10.1016/j.compositesb.2012.02.039.Suche in Google Scholar
31. Calgeris, I., Cakmakci, E., Ogan, A., Kahraman, M. V., Kayaman-Apohan, N. STARCH-STARKE 2012, 64, 399–407. https://doi.org/10.1002/star.201100158.Suche in Google Scholar
32. Ma, X. F., Yu, J. G. Carbohydr. Polym. 2004, 57, 197–203. https://doi.org/10.1016/j.carbpol.2004.04.012.Suche in Google Scholar
33. De Miranda, C. S., Ferreira, M. S., Magalhaes, M. T., Goncalves, A. P. B., de Oliveira, J. C., Guimaraes, D. H., Jose, N. M. Mater. Res. 2015, 18, 260–264. https://doi.org/10.1590/1516-1439.370414.Suche in Google Scholar
34. Suhas, Carrott. P. J. M., Ribeiro Carrott, M. M. L. Bioresour. Technol. 2007, 98, 2301–2312. https://doi.org/10.1016/j.biortech.2006.08.008.Suche in Google Scholar PubMed
35. Khezami, L., Chetouani, A., Taouk, B., Capart, R. Powder Technol. 2005, 157, 48–56. https://doi.org/10.1016/j.powtec.2005.05.009.Suche in Google Scholar
36. Bouajila, J., Dole, P., Joly, C., Limare, A. J. Appl. Polym. Sci. 2006, 102, 1445–1451. https://doi.org/10.1002/app.24299.Suche in Google Scholar
37. Al-Hassan, A. A., Norziah, M. H. Food Hydrocoll. 2012, 26, 108–117. https://doi.org/10.1016/j.foodhyd.2011.04.015.Suche in Google Scholar
38. Santos, T. A., Spinace, M. A. S. Int. J. Biol. Macromol. 2021, 167, 358–368. https://doi.org/10.1016/j.ijbiomac.2020.11.156.Suche in Google Scholar PubMed
39. Zhou, X. M., Cheng, R., Wang, B., Zeng, J. S., Xu, J., Li, J. P., Kang, L., Cheng, Z., Gao, W. H., Chen, K. F. Carbohydr. Polym. 2021, 251, 117117. https://doi.org/10.1016/j.carbpol.2020.117117.Suche in Google Scholar PubMed
40. Chang, C. C., Trinh, B. M., Mekonnen, T. H. J. Colloid. Interface Sci. 2021, 593, 290–303. https://doi.org/10.1016/j.jcis.2021.03.010.Suche in Google Scholar PubMed
41. Kargarzadeh, H., Galeski, A., Pawlak, A. Polymer 2020, 203, 122748. https://doi.org/10.1016/j.polymer.2020.122748.Suche in Google Scholar
42. Xiong, S. J., Pang, B., Zhou, S. J., Li, M. K., Yang, S., Wang, Y. Y., Shi, Q. T., Wang, S. F., Yuan, T. Q., Sun, R. C. ACS Sustain. Chem. Eng. 2020, 8, 5338–5346. https://doi.org/10.1021/acssuschemeng.0c00789.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity